连接所有点的最小费用(克鲁斯卡尔)

一、题目

 

 二、思路

最小生成树

class Solution {
    public int minCostConnectPoints(int[][] points) {
        int n = points.length;
        UnionFind uf = new UnionFind(n);
       //边集数组
        List<Edge> edges = new ArrayList<Edge>();
        for (int i = 0; i < n; i++) {
            for (int j = i + 1; j < n; j++) {
                edges.add(new Edge(dist(points, i, j), i, j));
            }
        }
      //边集数组按照曼哈顿距离排序
        Collections.sort(edges, new Comparator<Edge>() {
            public int compare(Edge edge1, Edge edge2) {
                return edge1.len - edge2.len;
            }
        });
        int result = 0, num = 1;
        for (Edge edge : edges) {
            int len = edge.len;
            int x = edge.x;
            int y = edge.y;
            if (!uf.isConnect(x, y)) {
                result += len;
                num++;
                uf.union(x,y);
                if (num == n) {
                    break;
                }
            }
        }
        return result ;
    }

    public int dist(int[][] points, int x, int y) {
        return Math.abs(points[x][0] - points[y][0]) + Math.abs(points[x][1] - points[y][1]);
    }
}

 //并查集
class UnionFind{
        int[] parents; 
        UnionFind(int size){
           this.parents = new int[size];
           //并查集数组初始化
           for(int i = 0; i < size; i++){
               parents[i] = i;
           }
        }
 
        public int find(int x){
            int r = x;
            while(parents[r] != r){
                r = parents[r];
            }
            return r;
        }
       public void union(int x, int y){
            int fx = find(x);
            int fy = find(y);
            if(fx == fy){
                return;
            }
            parents[fx] = fy;
        }
 
        public boolean isConnect(int x, int y){
            return find(x) == find(y);
        }
    }

class Edge {
    int len, x, y;

    public Edge(int len, int x, int y) {
        this.len = len;
        this.x = x;
        this.y = y;
    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值