前言
是的,我又肝了一篇,关于
RedisTemplate
。好哥哥问我为什么这么肝,我无奈的笑了说道:谁叫我氪不起(泪水又再一次打湿了我的眼睛)。好的,还有没有看过我上一篇 万字长文解析 Redis 高级客户端 Lettuce 的吗。没有看的好哥哥建议还是花个几个小时看一下(劝你善良),因为今天这篇跟前两篇都是有关系的。正如标题RedisTemplate
可没你想的那么简单,而且篇幅真的很长。
概述
首先,RedisTemplate
是Spring Data Redis
提供给用户的最高级的抽象客户端,用户可直接通过RedisTemplate
进行多种操作,同时RedisTemplate
是建立在我们上两篇讲的Jedis
和Lettuce
之上的。怎么理解呢?就好比我们连接Mysql
数据库,我们会使用比如HiKariCP
和Druid
连接池,Jedis
和Lettuce
的关系就跟它们两差不多。
无论像Mysql
、Redis
、消息中间件,我们都需要创建客户端连接、根据业务逻辑进行增删改查、关闭客户端连接等操作。Spring 中为例简化这一系列的操作,提供了模板类。举个大家很熟悉的RestTemplate
类,逻辑都是一样的。
Spring 为了将数据访问中的固定和变化部分分开,将相同的数据访问流程固化到模板类中,变化的部分通过回调接口开放出来,用于具体定义数据访问和结果返回的操作,同时保证模板类是线程安全的,以便多个数据访问线程共享同一个模板实例。
使用
1 添加依赖
还是老样子,到maven
中找到对应使用最多的那一个
<dependency>
<groupId>org.springframework.data</groupId>
<artifactId>spring-data-redis</artifactId>
<version>2.3.3.RELEASE</version>
</dependency>
2 添加配置
连接池这个地方有个需要注意点就是建议使用lettuce
,不熟悉的可以看我上一篇万字长文解析 Redis 高级客户端 Lettuce。jedis
客户端连接方式是基于tcp
的阻塞式连接方式,而lettuce
是基于netty
的多路复用异步非阻塞的连接方案。所以这里推荐使用lettuce
(悄咪咪的说一下就是我们项目中用的也是这个)。这里贴一部分主要配置,其他的就交给好哥哥们了。
spring:
redis:
timeout: 6000ms # 连接超时时长(毫秒)
# host: 127.0.0.1 #单机
# port: 6379
password: '' # 密码(默认为空)
cluster: #集群
nodes:
- 127.0.0.1:6379
- 127.0.0.1:6380
- 127.0.0.1:6381
# jedis: # jedis 连接池
lettuce: # lettuce 连接池
pool:
max-idle: 8 # 连接池中的最大空闲连接 默认8
min-idle: 0 # 连接池中的最小空闲连接 默认0
max-active: 8 # 连接池最大连接数 默认8 ,负数表示没有限制
max-wait: -1ms # 连接池最大阻塞等待时间(使用负值表示没有限制) 默认-1
3 RedisConfig 配置
import com.fasterxml.jackson.annotation.JsonAutoDetect;
import com.fasterxml.jackson.annotation.PropertyAccessor;
import com.fasterxml.jackson.databind.ObjectMapper;
import org.springframework.boot.autoconfigure.condition.ConditionalOnProperty;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.data.redis.connection.RedisConnectionFactory;
import org.springframework.data.redis.connection.lettuce.LettuceConnectionFactory;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.data.redis.serializer.Jackson2JsonRedisSerializer;
import org.springframework.data.redis.serializer.RedisSerializer;
import org.springframework.data.redis.serializer.StringRedisSerializer;
/**
* @Deacription Redis 配置类
* @Author xjw
**/
@Configuration
public class RedisConfig {
/**
* 1. Jedis、Lettuce 根据配置(二选一)
* 2. key使用StringRedisSerializer
* 3. value根据项目情况选择,需要以json存储,参考Lettuce配置使用Jackson2JsonRedisSerializer
* jedis 配置方式
*/
//@Bean
public RedisTemplate<String, Object> redisTemplate(RedisConnectionFactory factory) {
StringRedisSerializer stringRedisSerializer = new StringRedisSerializer();
// 配置redisTemplate
RedisTemplate<String, Object> redisTemplate = new RedisTemplate<>();
redisTemplate.setConnectionFactory(factory);
redisTemplate.setKeySerializer(stringRedisSerializer);
redisTemplate.setHashKeySerializer(stringRedisSerializer);
redisTemplate.setHashValueSerializer(stringRedisSerializer);
redisTemplate.setValueSerializer(stringRedisSerializer);
return redisTemplate;
}
/**
* Lettuce 配置方式
*
* @param lettuceConnectionFactory
* @return
*/
@Bean
public RedisTemplate<String, Object> redisTemplate(LettuceConnectionFactory lettuceConnectionFactory) {
// key序列化
RedisSerializer<?> stringSerializer = new StringRedisSerializer();
// value序列化
Jackson2JsonRedisSerializer<Object> jackson2JsonRedisSerializer = new Jackson2JsonRedisSerializer<Object>(Object.class);
ObjectMapper om = new ObjectMapper();
om.setVisibility(PropertyAccessor.ALL, JsonAutoDetect.Visibility.ANY);
om.enableDefaultTyping(ObjectMapper.DefaultTyping.NON_FINAL);
jackson2JsonRedisSerializer.setObjectMapper(om);
// 配置redisTemplate
RedisTemplate<String, Object> redisTemplate = new RedisTemplate<String, Object>();
redisTemplate.setConnectionFactory(lettuceConnectionFactory);
// key序列化
redisTemplate.setKeySerializer(stringSerializer);
// value序列化
redisTemplate.setValueSerializer(jackson2JsonRedisSerializer);
// Hash key序列化
redisTemplate.setHashKeySerializer(stringSerializer);
// Hash value序列化
redisTemplate.setHashValueSerializer(jackson2JsonRedisSerializer);
redisTemplate.afterPropertiesSet();
return redisTemplate;
}
}
4 工具类
工具类篇幅有点长,可以点负责到本地看,然后点目录跳过。
package com.xjw.config.redis;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.stereotype.Component;
import org.springframework.util.CollectionUtils;
import java.util.List;
import java.util.Map;
import java.util.Set;
import java.util.concurrent.TimeUnit;
/**
* redis工具类
*
* @Author xjw
*/
@Component
public class RedisUtil {
@Autowired
private RedisTemplate<String, Object> redisTemplate;
/**
* 指定缓存失效时间
*
* @param key 键
* @param time 时间(秒)
* @return
*/
public boolean expire(String key, long time) {
try {
if (time > 0) {
redisTemplate.expire(key, time, TimeUnit.SECONDS);
}
return true;
} catch (Exception e) {
e.printStackTrace();
return false;
}
}
/**
* 根据key 获取过期时间
*
* @param key 键 不能为null
* @return 时间(秒) 返回0代表为永久有效
*/
public long getExpire(String key) {
if (null == key || key.length() <= 0) {
return -1L;
}
return redisTemplate.getExpire(key, TimeUnit.SECONDS);
}
/**
* 判断key是否存在
*
* @param key 键
* @return true 存在 false不存在
*/
public boolean hasKey(String key) {
try {
return redisTemplate.hasKey(key);
} catch (Exception e) {
e.printStackTrace();
return false;
}
}
/**
* 删除缓存
*
* @param key 可以传一个值 或多个
*/
@SuppressWarnings("unchecked")
public void del(String... key) {
if (key != null && key.length > 0) {
if (key.length == 1) {
redisTemplate.delete(key[0]);
} else {
redisTemplate.delete(CollectionUtils.arrayToList(key));
}
}
}
// ============================String=============================
/**
* 普通缓存获取
*
* @param key 键
* @return 值
*/
public Object get(String key) {
return key == null ? null : redisTemplate.opsForValue().get(key);
}
/**
* 普通缓存放入
*
* @param key 键
* @param value 值
* @return true成功 false失败
*/
public boolean set(String key, Object value) {
try {
redisTemplate.opsForValue().set(key, value);
return true;
} catch (Exception e) {
e.printStackTrace();
return false;
}
}
/**
* 普通缓存放入并设置时间
*
* @param key 键
* @param value 值
* @param time 时间(秒) time要大于0 如果time小于等于0 将设置无限期
* @return true成功 false 失败
*/
public boolean set(String key, Object value, long time) {
try {
if (time > 0) {
redisTemplate.opsForValue().set(key, value, time, TimeUnit.SECONDS);
} else {
set(key, value);
}
return true;
} catch (Exception e) {
e.printStackTrace();
return false;
}
}
/**
* 递增
*
* @param key 键
* @param delta 要增加几(大于0)
* @return
*/
public long incr(String key, long delta) {
if (delta < 0) {
throw new RuntimeException("递增因子必须大于0");
}
return redisTemplate.opsForValue().increment(key, delta);
}
/**
* 递减
*
* @param key 键
* @param delta 要减少几(小于0)
* @return
*/
public long decr(String key, long delta) {
if (delta < 0) {
throw new RuntimeException("递减因子必须大于0");
}
return redisTemplate.opsForValue().increment(key, -delta);
}
// ================================Map=================================
/**
* HashGet
*
* @param key 键 不能为null
* @param item 项 不能为null
* @return 值
*/
public Object hget(String key, String item) {
return redisTemplate.opsForHash().get(key, item);
}
/**
* 获取hashKey对应的所有键值
*
* @param key 键
* @return 对应的多个键值
*/
public Map<Object, Object> hmget(String key) {
return redisTemplate.opsForHash().entries(key);
}
/**
* HashSet
*
* @param key 键
* @param map 对应多个键值
* @return true 成功 false 失败
*/
public boolean hmset(String key, Map<String, Object> map) {
try {
redisTemplate.opsForHash().putAll(key, map);
return true;
} catch (Exception e) {
e.printStackTrace();
return false;
}
}
/**
* HashSet 并设置时间
*
* @param key 键
* @param map 对应多个键值
* @param time 时间(秒)
* @return true成功 false失败
*/
public boolean hmset(String key, Map<String, Object> map, long time) {
try {
redisTemplate.opsForHash().putAll(key, map);
if (time > 0) {
expire(key, time);
}
return true;
} catch (Exception e) {
e.printStackTrace();
return false;
}
}
/**
* 向一张hash表中放入数据,如果不存在将创建
*
* @param key 键
* @param item 项
* @param value 值
* @return true 成功 false失败
*/
public boolean hset(String key, String item, Object value) {
try {
redisTemplate.opsForHash().put(key, item, value);
return true;
} catch (Exception e) {
e.printStackTrace();
return false;
}
}
/**
* 向一张hash表中放入数据,如果不存在将创建
*
* @param key 键
* @param item 项
* @param value 值
* @param time 时间(秒) 注意:如果已存在的hash表有时间,这里将会替换原有的时间
* @return true 成功 false失败
*/
public boolean hset(String key, String item, Object value, long time) {
try {
redisTemplate.opsForHash().put(key, item, value);
if (time > 0) {
expire(key, time);
}
return true;
} catch (Exception e) {
e.printStackTrace();
return false;
}
}
/**
* 删除hash表中的值
*
* @param key 键 不能为null
* @param item 项 可以使多个 不能为null
*/
public void hdel(String key, Object... item) {
redisTemplate.opsForHash().delete(key, item);
}
/**
* 判断hash表中是否有该项的值
*
* @param key 键 不能为null
* @param item 项 不能为null
* @return true 存在 false不存在
*/
public boolean hHasKey(String key, String item) {
return redisTemplate.opsForHash().hasKey(key, item);
}
/**
* hash递增 如果不存在,就会创建一个 并把新增后的值返回
*
* @param key 键
* @param item 项
* @param by 要增加几(大于0)
* @return
*/
public double hincr(String key, String item, double by) {
return redisTemplate.opsForHash().increment(key, item, by);
}
/**
* hash递减
*
* @param key 键
* @param item 项
* @param by 要减少记(小于0)
* @return
*/
public double hdecr(String key, String item, double by) {
return redisTemplate.opsForHash().increment(key, item, -by);
}
// ============================set=============================
/**
* 根据key获取Set中的所有值
*
* @param key 键
* @return
*/
public Set<Object> sGet(String key) {
try {
return redisTemplate.opsForSet().members(key);
} catch (Exception e) {
e.printStackTrace();
return null;
}
}
/**
* 根据value从一个set中查询,是否存在
*
* @param key 键
* @param value 值
* @return true 存在 false不存在
*/
public boolean sHasKey(String key, Object value) {
try {
return redisTemplate.opsForSet().isMember(key, value);
} catch (Exception e) {
e.printStackTrace();
return false;
}
}
/**
* 将数据放入set缓存
*
* @param key 键
* @param values 值 可以是多个
* @return 成功个数
*/
public long sSet(String key, Object... values) {
try {
return redisTemplate.opsForSet().add(key, values);
} catch (Exception e) {
e.printStackTrace();
return 0;
}
}
/**
* 将set数据放入缓存
*
* @param key 键
* @param time 时间(秒)
* @param values 值 可以是多个
* @return 成功个数
*/
public long sSetAndTime(String key, long time, Object... values) {
try {
Long count = redisTemplate.opsForSet().add(key, values);
if (time > 0) {
expire(key, time);
}
return count;
} catch (Exception e) {
e.printStackTrace();
return 0;
}
}
/**
* 获取set缓存的长度
*
* @param key 键
* @return
*/
public long sGetSetSize(String key) {
try {
return redisTemplate.opsForSet().size(key);
} catch (Exception e) {
e.printStackTrace();
return 0;
}
}
/**
* 移除值为value的
*
* @param key 键
* @param values 值 可以是多个
* @return 移除的个数
*/
public long setRemove(String key, Object... values) {
try {
Long count = redisTemplate.opsForSet().remove(key, values);
return count;
} catch (Exception e) {
e.printStackTrace();
return 0;
}
}
// ===============================list=================================
/**
* 获取list缓存的内容
*
* @param key 键
* @param start 开始
* @param end 结束 0 到 -1代表所有值
* @return
*/
public List<Object> lGet(String key, long start, long end) {
try {
return redisTemplate.opsForList().range(key, start, end);
} catch (Exception e) {
e.printStackTrace();
return null;
}
}
/**
* 获取list缓存的长度
*
* @param key 键
* @return
*/
public long lGetListSize(String key) {
try {
return redisTemplate.opsForList().size(key);
} catch (Exception e) {
e.printStackTrace();
return 0;
}
}
/**
* 通过索引 获取list中的值
*
* @param key 键
* @param index 索引 index>=0时, 0 表头,1 第二个元素,依次类推;index<0时,-1,表尾,-2倒数第二个元素,依次类推
* @return
*/
public Object lGetIndex(String key, long index) {
try {
return redisTemplate.opsForList().index(key, index);
} catch (Exception e) {
e.printStackTrace();
return null;
}
}
/**
* 将list放入缓存
*
* @param key 键
* @param value 值
* @return
*/
public boolean lSet(String key, Object value) {
try {
redisTemplate.opsForList().rightPush(key, value);
return true;
} catch (Exception e) {
e.printStackTrace();
return false;
}
}
/**
* 将list放入缓存
*
* @param key 键
* @param value 值
* @param time 时间(秒)
* @return
*/
public boolean lSet(String key, Object value, long time) {
try {
redisTemplate.opsForList().rightPush(key, value);
if (time > 0) {
expire(key, time);
}
return true;
} catch (Exception e) {
e.printStackTrace();
return false;
}
}
/**
* 将list放入缓存
*
* @param key 键
* @param value 值
* @return
*/
public boolean lSet(String key, List<Object> value) {
try {
redisTemplate.opsForList().rightPushAll(key, value);
return true;
} catch (Exception e) {
e.printStackTrace();
return false;
}
}
/**
* 将list放入缓存
*
* @param key 键
* @param value 值
* @param time 时间(秒)
* @return
*/
public boolean lSet(String key, List<Object> value, long time) {
try {
redisTemplate.opsForList().rightPushAll(key, value);
if (time > 0) {
expire(key, time);
}
return true;
} catch (Exception e) {
e.printStackTrace();
return false;
}
}
/**
* 根据索引修改list中的某条数据
*
* @param key 键
* @param index 索引
* @param value 值
* @return
*/
public boolean lUpdateIndex(String key, long index, Object value) {
try {
redisTemplate.opsForList().set(key, index, value);
return true;
} catch (Exception e) {
e.printStackTrace();
return false;
}
}
/**
* 移除N个值为value
*
* @param key 键
* @param count 移除多少个
* @param value 值
* @return 移除的个数
*/
public long lRemove(String key, long count, Object value) {
try {
Long remove = redisTemplate.opsForList().remove(key, count, value);
return remove;
} catch (Exception e) {
e.printStackTrace();
return 0;
}
}
}
5 使用
这个的话就很简单了,把工具类注入,然后使用对应 API 就 OK 了。举一个小栗子把。
@Autowired
public RedisUtil redisUtil;
@GetMapping("/get")
public String get(String keyName) {
// 设值
redisUtil.set("hello", "world");
// 返回String
return String.valueOf(redisUtil.get(keyName));
}
原理
这个的主要解析get
方法原理及过程,弄清楚一个基本上其他也都是差不多的,关键还是需要好哥哥们跟着代码跑一遍。
- 初始化
初始化主要是要指定一个客户端,也就是类似于连接池。在这里我们配置了使用LettuceConnectionFactory
,其他的话就是要配置一些像连接池的属性和序列化方式。 RedisTemplate
结构解析
RedisTemplate
作为我们使用其方法的入口类,继承了RedisAccessor
实现了RedisOperations
(好哥哥们可以自己看下源码)。RedisAccessor
类主要是对连接工厂的配置,实现了InitializingBean
接口,在初始化bean
时会断言是否已经配置连接工厂。另外的话主要初始化的工作在它的子类RedisTemplate
中(重写了afterPropertiesSet
方法)。RedisOperations
接口定义了RedisTemplate
操作 Redis 的一些Api
方法,主要提供了一些对 Redis 键,事务,运行脚本等命令的支持,不负责数据的读写。具体实现类是StringRedisTemplate
、RedisTemplate
。
- 命令执行过程
- 执行命令第一步需要指定需要操作对应的数据结构。比如说
redisTemplate.opsForValue().get(key)
,这里指定了操作基础字符串类型。opsForValue
这个方法是因为RedisTemplate
实现了RedisOperations
。 - 第二步针对指定的数据结构获取到对应的具体实现类。
redisTemplate.opsForValue()
会返回一个ValueOperations
接口,它的实现类只会有一个DefaultValueOperations
。当调用get
方法时执行的就是DefaultValueOperations
中的get
方法。 - 解析操作命令流程。
DefaultValueOperations#get()
方法会调用execute
方法。execute
方法中会执行redisTemplate.execute
方法,也就是说最后执行的还是RedisTemplate
中的execute
方法。 RedisTemplate
的execute
方法解析。流程大概是通过配置的LettuceConnectionFactory
获取一个连接(这个连接可能是新建的也可能是复用的),然后执行RedisCallback#doInRedis
(实现类是ValueDeserializingRedisCallback
,在调用redisTemplate.execute
中通过匿名内部类的方式传入)将连接放入到回调中。- 解析
ValueDeserializingRedisCallback
类的doInRedis
方法。实际上执行的是其父类AbstractOperations
的doInRedis
,结果这又是一个抽象方法。然后就会执行其子类的ValueDeserializingRedisCallback
(就是上面说到的使用匿名内部类中的那个地方,实现了inRedis
方法)。 - 通过连接执行命令。
- 通过配置的序列化方式执行反序列化然后返回结果。
- 执行命令第一步需要指定需要操作对应的数据结构。比如说
总结
- 从使用上来说
RedisTemplate
、Jedis
、Lettuce
都很简单,实现上来说RedisTemplate
在客户端的基础上又进行了一次封装,而且实现上还是很绕的,在理解其原理上会更加的复杂。 RedisTemplate
中使用到了很多设计模式,比如说模板方法
、工厂模式
、单例模式
、动态代理
等等,源码好哥哥们还是可以去看看的。- 在初始化配置的时候一定要记得配置序列化方式,不然会默认使用
JdkSerializationRedisSerializer
。使用这种方式的话可读性就会很差了。 RedisTemplate
被 Spring 高度的封装,但是在某种程度上来说有一定的局限性。比如说RedisTemplate
舍弃了客户端一些高级特性和灵活的 API
本期就到这啦,有不对的地方欢迎好哥哥们评论区留言,另外求关注、求点赞