【Python】逐步回归

本文介绍了如何使用Python进行逐步回归,包括向前逐步回归的实现。通过参考多个资料,讨论了特征选择中的AIC和BIC准则在模型选择中的应用,以及显著性差异在这一过程中的作用。
摘要由CSDN通过智能技术生成

【参考】

1.  https://datascience.stackexchange.com/questions/937/does-scikit-learn-have-forward-selection-stepwise-regression-algorithm

2. 特征工程(一):前向逐步回归(R语言):https://zhuanlan.zhihu.com/p/31614564

3.模型选择之AIC与BIC:https://blog.csdn.net/jteng/article/details/40823675

4.显著性差异:https://zh.wikipedia.org/wiki/%E6%98%BE%E8%91%97%E6%80%A7%E5%B7%AE%E5%BC%82

 

【代码】

1.向前逐步回归

备注:以下使用的评估模型效果的方法为AIC/BIC;


                
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值