BSIQA considering binocular characteristics and deep perception map based on DBN

本文提出了一种新的立体图像质量评估(BSIQA)方法,结合双眼特性及深度感知图(DPM)。通过小波变换提取2D特征,并从DPM中获取3D特征。使用深度信念网络(DBN)模型训练这些特征,以量化立体图像质量。算法强调了双眼正负视差的影响,以及高对比度区域的HoG特征在质量评估中的作用。
摘要由CSDN通过智能技术生成

摘要:

本文算法是基于小波变换基础上,对左右单视图进行2D特征提取,将其作为图像的内容描述,并且从深度感知图中提取3D特征作为深度感知描述。深度感知图(DPM)被用来量化纵向深度信息来描述立体视觉感知,2D特征包括高频小波系数的HoG特征和全局统计信息包括幅值,方差和熵值,来自DPM的 全局统计特征作为3D特征。训练和测试时,三个DBM模型用来训练三种特征并得到最后的质量分数。

介绍

主要贡献:

  1. 大多数现有的算法使用双眼之间的绝对视差作为深度感知,但是忽略了主观立体感知是由双眼的正负视差得到的。在本文中提出了一种新的深度感知图来量化纵向深度信息,使之与人眼感知深度一致,可以直接反映人眼对场景相对位置和屏幕产生正视差和负视差的直观感受。
  2. 人眼对高对比度区域非常敏感,如边缘、纹理和失真常常影响到立体图像的高频成分。传统的度量方法通常直接从样本或预处理图像中提取HoG特征。为了获得更有效地反映立体图像质量的特征,本文提取了高频子带系数的HoG特征作为视觉灵敏度的描述。据我们所知,我们是第一个使用基于高频小波系数的HoG特征来评价立体图像质量的;
  3. 提出了一种新的双目权值系统来获得立体图像的内容质量。在考虑双目特征的基础上,研究了左右图像的多尺度感知特征,设计了动态加权系统。

相关工作

纵向深度感知理论

当人们看3D电影时,会感觉到电影中的场景在屏幕内或在屏幕外,这就是神单独感知。受此启发,将这种感知定量化,从而将物理量转化为指标,可以进行处理。

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值