The notes is based on the online course of Hugging Face.
### Basic Philosophy of a Simple Diffusion Model
Training a simple diffusion model:
- A simple diffusion model can be divided into 2 types of processes, to name it forward and backward propagation.
- Training data: inputs of pictures
- Forward Propagation: adding noises into the pictures, making the pictures tends to be complex and blurred in vision, until reaching Gaussian noise (pdf in normal distribution)
- Backward Propagation: denoise the blurred pictures back to the original pictures, and updating weights during the processes.
After finishing training the models:
- The inputted test data will be used to generate new pictures by the model.
- The forward propagation process is named Corruption.
### Sampling
- sampling is the method used to generate images from random noised pictures.
- After the first trial, feed a small proportion of the structure of the prediction into the input set, and restart the process of prediction
- After a few trial, a clear prediction will be made since we have a better starting point each trial
The above sampling is based on a simplified U-Net
The above sampling making better prediction is based on U-Net2D
赛博猫咪图: