First Notes about Simple Diffusion Model

The notes is based on the online course of Hugging Face. 

 ### Basic Philosophy of a Simple Diffusion Model
Training a simple diffusion model:
- A simple diffusion model can be divided into 2 types of processes, to name it  forward and backward propagation. 
- Training data: inputs of pictures 
- Forward Propagation: adding noises into the pictures, making the pictures tends to be complex and blurred in vision, until reaching Gaussian noise (pdf in normal distribution) 


- Backward Propagation: denoise the blurred pictures back to the original pictures, and updating weights during the processes. 

After finishing training the models:
- The inputted test data will be used to generate new pictures by the model.

- The forward propagation process is named Corruption.

### Sampling
- sampling is the method used to generate images from random noised pictures. 
- After the first trial, feed a small proportion of the structure of the prediction into the input set, and restart the process of prediction 
- After a few trial, a clear prediction will be made since we have a better starting point each trial 

The above sampling is based on a simplified U-Net 

The above sampling making better prediction is based on U-Net2D

赛博猫咪图:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值