Setup & Installation
依存关系
Sockeye
所需要的环境:
- Python3
- MXNet
- numpy
Installation
下面有几个有关Sockeye
和他的依存关系安装选项。下面我们会罗列出几个备选方案,和一些相关的说明。
-> via pip
最简单的方式是使用pip:
pip install sockeye
如果你想在GPU上运行sockeye,你需要确保你的Apache MXNet孵化版本包含了GPU绑定。根据你的CUDA版本,你可以运行以下命令:
wget https://raw.githubusercontent.com/awslabs/sockeye/master/requirements/requirements.gpu-cu${CUDA_VERSION}.txt
pip install sockeye --no-deps -r requirements.gpu-cu${CUDA_VERSION}.txt
rm requirements.gpu-cu${CUDA_VERSION}.txt
其中,**${CUDA_VERSION}**可以被写成80(8.0),90 (9.0), 92 (9.2), or 100 (10.0).分别对应的是CUDA的版本。
-> via source…
如果你只想使用sockeye而不扩展它,只需通过安装它即可:
pip install -r requirements/requirements.txt
pip install .
从github的仓库中克隆过来以后。
如果你想在GPU上运行sockeye,你需要确保你的Apache MXNet孵化版本包含了GPU绑定。根据你的CUDA版本,你可以运行以下命令:
pip install -r requirements/requirements.gpu-cu${CUDA_VERSION}.txt
pip install .
其中,**${CUDA_VERSION}**可以被写成80(8.0),90 (9.0), 92 (9.2), or 100 (10.0).分别对应的是CUDA的版本。
开发人员最好将$PYTHONPATH
指向git克隆源的根目录。
-> 利用anaconda环境,其中,anaconda
包含了conda、Python等180个多个科学包及依赖项。用户只需要运行以下行来安装sockeye(在一个没有GPU的实例上):
conda create -n sockeye python=3.6 // 创建一个虚拟环境 sockeye
source activate sockeye //激活环境
pip install sockeye --no-deps //安装sockeye
在使用GPU的实例上,下面的命令如下执行:
conda create -n sockeye python=3.6
source activate sockeye
wget https://raw.githubusercontent.com/awslabs/sockeye/master/requirements/requirements.gpu-cu${CUDA_VERSION}.txt
pip install sockeye --no-deps -r requirements.gpu-cu${CUDA_VERSION}.txt
rm requirements.gpu-cu${CUDA_VERSION}.txt
其中,**${CUDA_VERSION}**可以被写成80(8.0),90 (9.0), 92 (9.2), or 100 (10.0).分别对应的是CUDA的版本。
可选择的依赖关系
你可以安装Tensorboard来对训练过程可视化,您可以选择安装mxboard(pip install mxboard
)。为了可视化过程,运行Tensorboard工具(pip install tensorboard tensorflow
)日志目录指向训练输出文件夹:tensorboard --logdir <model>
。
如果要创建对齐图,需要安装matplotlib(pip install matplotlib)。
Running sockeye
安装之后,可以使用诸如sockeye-train、sockeye-translate、sockeye-average和sockeye-embeddings之类的命令行工具。下面举例:
sockeye-train
同样,如果sockeye目录在$PYTHONPATH上,则可以直接运行模块:
python -m sockeye.train