神经网络
ByiProX
欢迎关注公众号CodeWorks
展开
-
神经网络中为什么不能将权重初始值设置为一样的值
先说结论,如果权重初始值设为0的话,将无法正确进行学习。这是因为在误差反向传播法中,所有的权重值都会进行相同的更新。比如,在2层神经网络中,假设第1层和第2层的权重为0。这样一来,正向传播时,因为输入层的权重为0,所以第2层的神经元全部会被传递相同的值。第2层的神经元中全部输入相同的值,这意味着反向传播时第2层的权重全部都会进行相同的更新。因此,权重被更新为相同的值,并拥有了对称的值(重复的值)...原创 2019-11-12 10:16:59 · 2207 阅读 · 0 评论 -
神经网络的激活函数为什么要使用非线性函数?
有人说这曾经是一道面试题!我没说过这句话,但是感觉挺有道理 — 鲁迅▍什么是激活函数在神经元中,输入的inputs通过加权求和,然后被作用了一个函数,这个函数就是激活函数 Activation Function。激活函数在神经网络中的位置如图所示:▍为什么要用非线性函数要解释这个问题,可以反过来思考一下,为什么激活函数不能使用线性函数。如果使用线性函数,每一层输出都是上层输入的...原创 2019-09-08 23:12:23 · 9584 阅读 · 1 评论 -
神经网络的学习为何要设定损失函数?
这里所说的“学习”是指从训练数据中自动获取最优权重参数的过程。学习的目的就是以该损失函数为基准,找出能使它的值达到最小的权重参数。可能会有人问:我们想获得的是能提高识别精度的参数,特意再导入一个损失函数不是有些重复劳动吗?既然我们的目标是获得使识别精度尽可能高的神经网络,那不是应该把识别精度作为指标吗?听起来很有道理!对于这一疑问,我们可以根据**“导数“**在神经网络学习中的作用来回答。 ...原创 2019-10-01 00:15:11 · 1140 阅读 · 0 评论