面试题 08.12. 八皇后
- 设计一种算法,打印 N 皇后在 N × N 棋盘上的各种摆法,其中每个皇后都不同行、不同列,也不在对角线上。这里的“对角线”指的是所有的对角线,不只是平分整个棋盘的那两条对角线。
注意:本题相对原题做了扩展
示例:
输入:4
输出:[[".Q..","...Q","Q...","..Q."],["..Q.","Q...","...Q",".Q.."]]
解释: 4 皇后问题存在如下两个不同的解法。
[
[".Q..", // 解法 1
"...Q",
"Q...",
"..Q."],
["..Q.", // 解法 2
"Q...",
"...Q",
".Q.."]
]
Code:
class Solution(object):
def __init__(self):
self.ans = []
def solveNQueens(self, n):
"""
:type n: int
:rtype: List[List[str]]
"""
self.helper([-1]*n,0,n)
return self.ans
def helper(self,columnPositions,rowIndex,n):
if rowIndex == n:
self.printSolution(columnPositions,n)
return
for column in range(n):
columnPositions[rowIndex] = column
if self.isValid(columnPositions,rowIndex):
self.helper(columnPositions,rowIndex+1,n)
def isValid(self,columnPositions,rowIndex):
for i in range(rowIndex):
if columnPositions[i] == columnPositions[rowIndex]:
return False
elif abs(columnPositions[i]-columnPositions[rowIndex]) == rowIndex-i:
return False #检查两条斜线上
return True
def printSolution(self,columnPositions,n):
tmp = []
for row in range(n):
line = ""
for column in range(n):
if columnPositions[row] == column:
line += "Q"
else:
line += "."
tmp.append(line)
self.ans.append(tmp)