随笔
代码小鬼才
用心写代码
展开
-
污水处理。。。。。
初始氢氧根离子浓度[0H- ]1= 10-(14-pH)(单位:mol/L),目标氢氧根离子浓度[0H-] = 10-(14-pH:)初始氢离子浓度[H+]1=10-pH(单位:mol/L),目标氢离子浓度[H+]2 = 10-pH:。废水中氰化物的总质量为40x90000=3600000mg。酸的物质的量n観 = C觖xV觖,其中C酸是酸的浓度(单位:mol/L),V酸是酸的体积(单位:升)。碱的物质的量n碱 = CxV顾,其中C碱是碱的浓度(单位:mol/L),V碱是碱的体积(单位:升)。原创 2024-09-14 15:36:20 · 824 阅读 · 0 评论 -
TTS实现过程(大白话)
实现TTS先了解数据wav文件不知道童鞋们知不知道scipy这个函数(看,有童鞋举爪了),这个函数实现了读取wav文件的过程,具体是:scipy.io.wavefile这个函数,这个函数读取wav文件之后表现为数组的形式,这样就明了多了,wav文件通过scipy转码成为了数组的形式,同样数组也可以通过scipy.io.wavefile实现存为wav文件。好了,有了对数据的基础认识,接下来聊聊TTSTTS实现目前主流的方法大家应该也都了解过是将文字转化为拼音再转化为id,然后通过训练获得模型。浅了原创 2022-02-24 20:24:57 · 1446 阅读 · 0 评论 -
有关word2vec和Bert的一些相似思想(个人理解)
首先,明确一下word2vec的目的:做一个比较好的词向量,以便通过该词向量做出的模型参数浮动不是特别大.现在再看看它怎么做的.首先,将数据进行独热编码,通过独热编码与一个权重相乘获得一个非独热编码的向量,该权重记为:独热权重,所得词向量记为:word2vec词向量然后,将上述word2vec词向量放入模型中进行训练,得到一个表较好的独热权重和word2vec词向量上面两步已经诠释的word2vec的全部过程,但是对它的讨论并没有结束.将上述word2vec词向量放入相似任务的模型中原创 2021-11-16 13:43:07 · 1395 阅读 · 0 评论 -
rasa 如何构思好的语料(中文举例)
rasa良好的语料举一反三能力和类别平衡机能使得我们不需要构建大量语料同样能得到较好的训练效果,近期学习rasa,在构思rasa语料的时候,总结了一些方法,意在根据rasa的特点语料简约化,为自己以后的应用提供技术指导。...原创 2021-10-28 11:42:22 · 718 阅读 · 0 评论 -
Windows10安装docker菜鸟教程2024\4\10
Windows10安装docker菜鸟教程,超简单原创 2021-10-27 08:39:13 · 1976 阅读 · 1 评论 -
文本纠错之单词纠错子代码详解
# -- coding: utf-8 --# 本代码旨在阐述单词纠错基本原理(加个for循环就是文本纠错,如果是中文需要先分词,本文使用re正则找单词)import re, collections# 读取数据word_collection = open('../bayes_train_text.txt').read()# 匹配出单词(而不是字母)并将单词小写def word_lower(word): return re.findall('[a-z]+', word)# 将单.原创 2021-09-03 10:55:45 · 601 阅读 · 0 评论