数据结构实验之查找三:树的种类统计

本文介绍了数据结构实验中关于树的种类统计问题,讲解了如何利用哈希树(Trie树)高效地进行查找、插入和删除操作。哈希树在查找效率上优于传统哈希表,尤其适用于处理字符串前缀查询。文章还讨论了哈希树的构建和查询过程,以及其优缺点,并与字典树进行了对比。
摘要由CSDN通过智能技术生成

数据结构实验之查找三:树的种类统计

Time Limit: 400ms   Memory limit: 65536K  

题目描述

随着卫星成像技术的应用,自然资源研究机构可以识别每一个棵树的种类。请编写程序帮助研究人员统计每种树的数量,计算每种树占总数的百分比。

输入

输入一组测试数据。数据的第1行给出一个正整数N (n <= 100000),N表示树的数量;随后N行,每行给出卫星观测到的一棵树的种类名称,树的名称是一个不超过20个字符的字符串,字符串由英文字母和空格组成,不区分大小写。

输出

按字典序输出各种树的种类名称和它占的百分比,中间以空格间隔,小数点后保留两位小数。

示例输入

2
This is an Appletree
this is an appletree

示例输出

this is an appletree 100.00%

提示

 

哈希表 参考:http://blog.csdn.net/yang_yulei/article/details/46337405

 

理想的情况是希望不经过任何比较,一次存取便能得到所查的记录,那就必须在记的存储位置和它的关键字之间建立一个确定的对应关系f,使每个关键字和一个唯一的存储位置相对应。因而在查找时,只要根据这个对应关系f找到给定值K的像f(K)。由此,不需要进行比较便可直接取得所查记录。在此,我们称这个对应关系为哈希(Hash)函数,按这个思想建立的表为哈希表

在哈希表中对于不同的关键字可能得到同一哈希地址,这种现象称做冲突。在一般情况下,冲突只能尽可能地减少,而不能完全避免。因为哈希函数是从关键字集合到地址集合的映像。通常关键字的集合比较大,它的元素包括所有可能的关键字,而地址集合的元素仅为哈希表中的地址值。在一般情况下,哈希函数是一个压缩映像函数,这就不可避免的要产生冲突。

哈希树(HashTree)算法就是要提供一种在理论上和实际应用中均能有效地处理冲突的方法。一般的哈希(Hash)算法都是O(1)的,而且基本是以空间换时间。这很容易导致对存储空间无限制的需求。本文中哈希树(HashTree)算法在实际操作中使用了一些技巧使得对空间的需求控制在一定范围内。即空间需求仅和所需要存储的对象个数有关,不会无限制地“膨胀”下去。

 

 

 

哈希树的理论基础

 

质数分辨定理
简单地说就是:n个不同的质数可以“分辨”的连续整数的个数和他们的乘积相等。“分辨”就是指这些连续的整数不可能有完全相同的余数序列。
(这个定理的证明详见:http://wenku.baidu.com/view/16b2c7abd1f34693daef3e58.html

例如:
从2起的连续质数,连续10个质数就可以分辨大约M(10) =2*3*5*7*11*13*17*19*23*29= 6464693230 个数,已经超过计算机中常用整数(32bit)的表达范围。连续100个质数就可以分辨大约M(100) = 4.711930 乘以10的219次方。
而按照目前的CPU水平,100次取余的整数除法操作几乎不算什么难事。在实际应用中,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值