Description
有N个比赛队(1<=N<=500),编号依次为1,2,3,。。。。,N进行比赛,比赛结束后,裁判委员会要将所有参赛队伍从前往后依次排名,但现在裁判委员会不能直接获得每个队的比赛成绩,只知道每场比赛的结果,即P1赢P2,用P1,P2表示,排名时P1在P2之前。现在请你编程序确定排名。
Input
输入有若干组,每组中的第一行为二个数N(1<=N<=500),M;其中N表示队伍的个数,M表示接着有M行的输入数据。接下来的M行数据中,每行也有两个整数P1,P2表示即P1队赢了P2队。
Output
给出一个符合要求的排名。输出时队伍号之间有空格,最后一名后面没有空格。
其他说明:符合条件的排名可能不是唯一的,此时要求输出时编号小的队伍在前;输入数据保证是正确的,即输入数据确保一定能有一个符合要求的排名。
Sample Input
4 3
1 2
2 3
4 3
Sample Output
1 2 4 3
第一种:输出每一次找到的第一名就是排好的拓扑序列了,这种适用于数量少的排序,以下是代码。
#include<cstdio>
#include<cstdlib>
#include<cstring>
using namespace std;
int map[510][510];//前驱数量
int indegree[510];//入度,即前驱数量
int queue[510];//保存拓扑序列
void topo(int n)
{
int i,j,m,t=0;
for(j=0;j<n;j++)
{
for(i=1;i<=n;i++)
{
if(indegree[i]==0)
{//找出前驱数量为零的的点即每次找到第一名
m=i;break;
}
}
queue[t++]=m;indegree[m]=-1;//将第一名的前驱数量设为-1,以 免查询时再次被找到
for(i=1;i<=n;i++)
{//第二步将前驱中含有第一名的点前驱数量减1
if(map[m][i])indegree[i]--;
}
}
printf("%d",queue[0]);//输出拓扑序列
for(i=1;i<n;i++)
{
printf(" %d",queue[i]);
}
printf("\n");
}
int main()
{
int n,m,i,j,a,b;
while(~scanf("%d%d",&n,&m))
{
memset(indegree,0,sizeof(indegree));//初始化
memset(map,0,sizeof(map));
for(i=0;i<m;i++)
{
scanf("%d%d",&a,&b);
if(map[a][b]==0)
{
map[a][b]=1;indegree[b]++;//第一步记录关系和点的前驱数量
}
}
topo(n);//调用拓扑排序
}
return 0;
}
第二种方法:邻接表(链式向前)
当题中队员较多时用二维数组会超内存,一般二维数组用来存不超过1100的数量
#include<cstdio>
#include<cstdlib>
#include<cstring>
using namespace std;
int indegree[51000];
int queue[51000];
struct Node//把“头”结点和“头”结点指向的节点用结构体储存起来
{
int next;
int to;
}A[51000];
int head[51000];
void topo(int n)
{
int i,j,top,t=0;
for(j=0;j<n;++j)
{
for(i=1;i<=n;++i)
{
if(indegree[i]==0)
{
top=i;break;
}
}
queue[t++]=top;indegree[top]=-1;
for(int k=head[top];k!=-1;k=A[k].next)
{
indegree[A[k].to]--;
}
}
printf("%d",queue[0]);
for(i=1;i<n;++i)
{
printf(" %d",queue[i]);
}
printf("\n");
}
int main()
{
int n,m,i,j,a,b;
while(scanf("%d%d",&n,&m)!=EOF)
{
memset(indegree,0,sizeof(indegree));
memset(head,-1,sizeof(head));
for(i=0;i<m;++i)
{
scanf("%d%d",&a,&b);
//记录关系
A[i].to=b;
A[i].next=head[a];
head[a]=i;
indegree[b]++;//有指向b的节点,b的入度加1
}
topo(n);
}
return 0;
}
第三种:队列实现(这里用了优先队列),相对于第一种优化,但仍有二维数组范围限制。
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<queue>
#include<functional>
using namespace std;
int map[510][510];
int indegree[510];
void topo(int n)
{
priority_queue<int,vector<int>,greater<int> >Q;
int i,j,m,t=0;
for(i=1;i<=n;i++)
{
if(indegree[i]==0)//找到头结点,入列
{
Q.push(i);
}
}
int sign=1;
while(!Q.empty())
{
int top=Q.top();Q.pop();//初始化,清空队列
indegree[top]=-1;
if(sign)
printf("%d",top);
else
printf(" %d",top);
sign=0;
for(i=1;i<=n;i++)
{
if(map[top][i])//头结点已入列,找到前驱中有“头”结点的点入度减一
{
indegree[i]--;
if(indegree[i]==0)//找到入度为0的节点成为“头”结点,并再次入列
{
Q.push(i);
}
}
}
}
printf("\n");
}
int main()
{
int n,m,i,j,a,b;
while(~scanf("%d%d",&n,&m))
{
memset(indegree,0,sizeof(indegree));
memset(map,0,sizeof(map));
for(i=0;i<m;i++)
{
scanf("%d%d",&a,&b);
if(map[a][b]==0)//记录关系
{
map[a][b]=1;indegree[b]++;
}
}
topo(n);
}
return 0;
}