[1095. 山脉数组中查找目标值]
难度:困难
(这是一个 交互式问题 )
给你一个 山脉数组 mountainArr
,请你返回能够使得 mountainArr.get(index)
等于 target
最小 的下标 index
值。
如果不存在这样的下标 index
,就请返回 -1
。
何为山脉数组?如果数组 A
是一个山脉数组的话,那它满足如下条件:
首先,A.length >= 3
其次,在 0 < i < A.length - 1
条件下,存在 i
使得:
A[0] < A[1] < ... A[i-1] < A[i]
A[i] > A[i+1] > ... > A[A.length - 1]
你将 不能直接访问该山脉数组,必须通过 MountainArray
接口来获取数据:
MountainArray.get(k)
- 会返回数组中索引为k
的元素(下标从 0 开始)MountainArray.length()
- 会返回该数组的长度
注意:
对 MountainArray.get
发起超过 100
次调用的提交将被视为错误答案。此外,任何试图规避判题系统的解决方案都将会导致比赛资格被取消。
为了帮助大家更好地理解交互式问题,我们准备了一个样例 “答案”:https://leetcode-cn.com/playground/RKhe3ave
,请注意这 不是一个正确答案。
示例 1:
输入:array = [1,2,3,4,5,3,1], target = 3
输出:2
解释:3 在数组中出现了两次,下标分别为 2 和 5,我们返回最小的下标 2。
示例 2:
输入:array = [0,1,2,4,2,1], target = 3
输出:-1
解释:3 在数组中没有出现,返回 -1。
提示:
3 <= mountain_arr.length() <= 10000
0 <= target <= 10^9
0 <= mountain_arr.get(index) <= 10^9
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/find-in-mountain-array
解法:二分查找
思路
由于山脉数组的特性,我们可以先通过二分查找来找到顶峰的位置,然后先在顶峰的左侧搜索目标(要求返回等于 target 最小 的下标 index 值),如果左侧未能找到目标,然后在顶峰的右侧寻找目标。
/**
* // This is MountainArray's API interface.
* // You should not implement it, or speculate about its implementation
* interface MountainArray {
* public int get(int index) {}
* public int length() {}
* }
*/
class Solution {
public int findInMountainArray(int target, MountainArray mountainArr) {
int len = mountainArr.length(); //山峰长度
int left = 0, right = len - 1; //左右边界
int peak = -1; //顶峰位置
//寻找顶峰位置
while(left <= right){
int mid = left + (right - left) / 2;
int midHeight = mountainArr.get(mid);
int midHeight_left = Integer.MIN_VALUE; //中间的前一个位置
int midHeight_right = Integer.MAX_VALUE; //中间的后一个位置
if(mid - 1 >= 0){
midHeight_left = mountainArr.get(mid - 1);
}
if(mid + 1 <= len - 1){
midHeight_right = mountainArr.get(mid + 1);
}
if(midHeight_left < midHeight && midHeight > midHeight_right){
peak = mid;
break;
}
if(midHeight_left < midHeight){
left = mid + 1; //向右侧寻找
}else{
right = mid - 1; //向左侧寻找
}
}
//如果目标值大于顶峰高度
if(mountainArr.get(peak) < target){
return -1;
}
//在顶峰左侧寻找
left = 0;
right = peak;
while(left <= right){
int mid = left + (right - left) / 2;
int midheight = mountainArr.get(mid);
if(midheight == target){
return mid;
}
else if(midheight < target){
left = mid + 1;
}else{
right = mid - 1;
}
}
//在顶峰右侧寻找
left = peak + 1;
right = len - 1;
while(left <= right){
int mid = left + (right - left) / 2;
int midheight = mountainArr.get(mid);
if(midheight == target){
return mid;
}
else if(midheight < target){
right = mid - 1; //右侧的数列降序排序,故目标值比中间值大时,往左侧寻找
}else{
left = mid + 1;
}
}
return -1;
}
}