面试题07. 重建二叉树

[面试题07. 重建二叉树]

难度 中等

输入某二叉树的前序遍历和中序遍历的结果,请重建该二叉树。假设输入的前序遍历和中序遍历的结果中都不含重复的数字。

例如,给出

前序遍历 preorder = [3,9,20,15,7]
中序遍历 inorder = [9,3,15,20,7]

返回如下的二叉树:

    3
   / \
  9  20
    /  \
   15   7

限制:

0 <= 节点个数 <= 5000

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/zhong-jian-er-cha-shu-lcof

解法一:递归

二叉树的前序遍历为:根节点、左子树、右子树

二叉树的中序遍历为:左子树、根节点、右子树

前序遍历的第一个节点是根节点,只要找到根节点在中序遍历中的位置,就可以区分左子树和右子树分别有多少个节点。

由于树中的节点数量与遍历方式无关,通过中序遍历得知左子树和右子树的节点数量之后,可以根据节点数量得到前序遍历中的左子树和右子树的分界,因此可以进一步得到左子树和右子树各自的前序遍历和中序遍历,可以通过递归的方式,重建左子树和右子树,然后重建整个二叉树。

class Solution {
    public TreeNode buildTree(int[] preorder, int[] inorder) {
    	if(preorder == null || preorder.length == 0) {
    		return null;
    	}
		return buildTree(preorder, 0, preorder.length - 1, inorder, 0, preorder.length - 1);
    }
    
    private TreeNode buildTree(int[] preorder,int preStart, int preEnd, int[] inorder, int inStart, int inEnd) {
    	
    	//递归出口, 遍历序列中不包含任何节点
    	if(preStart > preEnd || inStart > inEnd) {
    		return null;
    	}

    	int index = 0;	
    	//寻找前序序列中第一个节点在中序序列中的位置
    	for(index = inStart; index <= inEnd; index++) {
    		if(preorder[preStart] == inorder[index]) {
    			break;
    		}
    	}
    	
    	TreeNode temp = new TreeNode(preorder[preStart]);
    	//创建左子树
    	temp.left = buildTree(preorder, preStart + 1, preStart + index - inStart, inorder, inStart, index - 1);
    	//创建右子树
    	temp.right = buildTree(preorder, preStart + index - inStart + 1, preEnd, inorder, index + 1, inEnd);
    	
		return temp;
    }
}

时间复杂度:O(n) 对于每个节点都有创建过程以及根据左右子树重建过程。
空间复杂度:O(n) 存储整棵树的开销。

改进:可以将中序遍历的值和索引存在一个哈希表中,这样就可以很方便的找到根结点在中序遍历数组中的索引。

class Solution {
    public TreeNode buildTree(int[] preorder, int[] inorder) {
    	if(preorder == null || preorder.length == 0) {
    		return null;
    	}
    	Map<Integer, Integer> indexMap = new HashMap<Integer, Integer>();
        for (int i = 0; i < preorder.length; i++) {
            indexMap.put(inorder[i], i);
        }
    	return function(preorder, 0, preorder.length - 1, inorder, 0, preorder.length - 1, indexMap);
    }
    
    private TreeNode function(int[] preorder,int preStart, int preEnd, int[] inorder, int inStart, int inEnd, Map<Integer, Integer> indexMap) {
    	
    	//递归出口, 遍历序列中不包含任何节点
    	if(preStart > preEnd || inStart > inEnd) {
    		return null;
    	}
    	//寻找前序序列中第一个节点在中序序列中的位置
    	int index = indexMap.get(preorder[preStart]);
    	
    	TreeNode temp = new TreeNode(preorder[preStart]);
    	//创建左子树
    	temp.left = function(preorder, preStart + 1, preStart + index - inStart, inorder, inStart, index - 1, indexMap);
    	//创建右子树
    	temp.right = function(preorder, preStart + index - inStart + 1, preEnd, inorder, index + 1, inEnd, indexMap);
    	
		return temp;
    }
}
解法二:迭代
class Solution {
    public TreeNode buildTree(int[] preorder, int[] inorder) {
        if (preorder == null || preorder.length == 0) {
            return null;
        }
        TreeNode root = new TreeNode(preorder[0]);
        int length = preorder.length;
        Stack<TreeNode> stack = new Stack<TreeNode>();
        stack.push(root);
        int inorderIndex = 0;
        for (int i = 1; i < length; i++) {
            int preorderVal = preorder[i];
            TreeNode node = stack.peek();
            if (node.val != inorder[inorderIndex]) {
                node.left = new TreeNode(preorderVal);
                stack.push(node.left);
            } else {
                while (!stack.isEmpty() && stack.peek().val == inorder[inorderIndex]) {
                    node = stack.pop();
                    inorderIndex++;
                }
                node.right = new TreeNode(preorderVal);
                stack.push(node.right);
            }
        }
        return root;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

两只Tigers跑得快

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值