[974. 和可被 K 整除的子数组]
难度 中等
给定一个整数数组 A
,返回其中元素之和可被 K
整除的(连续、非空)子数组的数目。
示例:
输入:A = [4,5,0,-2,-3,1], K = 5
输出:7
解释:
有 7 个子数组满足其元素之和可被 K = 5 整除:
[4, 5, 0, -2, -3, 1], [5], [5, 0], [5, 0, -2, -3], [0], [0, -2, -3], [-2, -3]
提示:
1 <= A.length <= 30000
-10000 <= A[i] <= 10000
2 <= K <= 10000
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/subarray-sums-divisible-by-k
解法一:暴力枚举 + 前缀和
记 preSum[i] 表示数组 A 第 0 项 到 第 i 项 的总,即 preSum[i] = A[0] + A[1] + … + A[i]
数组某项 A[i] 可以表示为相邻前缀和之差:A[i] = preSum[i] - preSum[i - 1]
class Solution {
public int subarraysDivByK(int[] A, int K) {
int len = A.length;
int ans = 0;
int[] preSum = new int[len + 1];
for(int i = 0; i < len; i++){
preSum[i + 1] = preSum[i] + A[i];
}
for(int i = 1; i < len + 1; i++){
for(int j = i; j < len + 1; j++){
int sum = preSum[j] - preSum[i - 1];
if(sum % K == 0){
ans++;
}
}
}
return ans;
}
}
时间复杂度:O(N2)
空间复杂对度:O(1)
解法二:哈希表 + 逐一统计
题目要求 (preSum[ j ] - preSum[ i - 1 ]) mod K== 0, 可以转化为 preSum[ j ] mod K == reSum[ i - 1 ] mod K
因此可以使用 HashMap 来存储前缀和 mod K 后所得值出现的次数,遍历数组 A 的每一项,求当前项的前缀和 mod K ,存入 map 中
- 之前没有存过,则作为 key 存入,值为 1
- 之前存过,则对应值 +1
并将该 前缀和 mod K 出现的次数累加到结果中。
class Solution {
public int subarraysDivByK(int[] A, int K) {
Map<Integer, Integer> record = new HashMap<>();
record.put(0, 1);
int sum = 0, ans = 0;
for (int x: A) {
sum += x;
int modulus = (sum % K + K) % K;
int same = record.getOrDefault(modulus, 0);
ans += same;
record.put(modulus, same + 1);
}
return ans;
}
}
时间复杂度:O(n)
空间复杂对度:O(min(N,K)),即哈希表需要的空间