每日一题(2020-05-27)287. 寻找重复数974. 和可被 K 整除的子数组

[974. 和可被 K 整除的子数组]

难度 中等

给定一个整数数组 A,返回其中元素之和可被 K 整除的(连续、非空)子数组的数目。

示例:

输入:A = [4,5,0,-2,-3,1], K = 5
输出:7
解释:
有 7 个子数组满足其元素之和可被 K = 5 整除:
[4, 5, 0, -2, -3, 1], [5], [5, 0], [5, 0, -2, -3], [0], [0, -2, -3], [-2, -3]

提示:

  1. 1 <= A.length <= 30000
  2. -10000 <= A[i] <= 10000
  3. 2 <= K <= 10000

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/subarray-sums-divisible-by-k

解法一:暴力枚举 + 前缀和

记 preSum[i] 表示数组 A 第 0 项 到 第 i 项 的总,即 preSum[i] = A[0] + A[1] + … + A[i]

数组某项 A[i] 可以表示为相邻前缀和之差:A[i] = preSum[i] - preSum[i - 1]

class Solution {
    public int subarraysDivByK(int[] A, int K) {
        int len = A.length;
        int ans = 0;
        int[] preSum = new int[len + 1];
        for(int i = 0; i < len; i++){
            preSum[i + 1] = preSum[i] + A[i];  
        }
        for(int i = 1; i < len + 1; i++){
            for(int j = i; j < len + 1; j++){
                int sum = preSum[j] - preSum[i - 1];
                if(sum % K == 0){
                    ans++;
                }
            }
        }
        return ans;
    }
}

时间复杂度:O(N2

空间复杂对度:O(1)

解法二:哈希表 + 逐一统计

题目要求 (preSum[ j ] - preSum[ i - 1 ]) mod K== 0, 可以转化为 preSum[ j ] mod K == reSum[ i - 1 ] mod K

因此可以使用 HashMap 来存储前缀和 mod K 后所得值出现的次数,遍历数组 A 的每一项,求当前项的前缀和 mod K ,存入 map 中

  • 之前没有存过,则作为 key 存入,值为 1
  • 之前存过,则对应值 +1

并将该 前缀和 mod K 出现的次数累加到结果中。

class Solution {
    public int subarraysDivByK(int[] A, int K) {
        Map<Integer, Integer> record = new HashMap<>();
        record.put(0, 1);
        int sum = 0, ans = 0;
        for (int x: A) {
            sum += x;
            int modulus = (sum % K + K) % K;
            int same = record.getOrDefault(modulus, 0);
            ans += same;
            record.put(modulus, same + 1);
        }
        return ans;
    }
}

时间复杂度:O(n)

空间复杂对度:O(min(N,K)),即哈希表需要的空间

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

两只Tigers跑得快

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值