[16. 最接近的三数之和]
难度 中等
给定一个包括 n 个整数的数组 nums
和 一个目标值 target
。找出 nums
中的三个整数,使得它们的和与 target
最接近。返回这三个数的和。假定每组输入只存在唯一答案。
示例:
输入:nums = [-1,2,1,-4], target = 1
输出:2
解释:与 target 最接近的和是 2 (-1 + 2 + 1 = 2) 。
提示:
3 <= nums.length <= 10^3
-10^3 <= nums[i] <= 10^3
-10^4 <= target <= 10^4
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/3sum-closest
解法:
题目的要求是为数组里面找到 a,b,c 三个数,使得 a + b + c 最接近 target。用暴力方法枚举的时间复杂度为O(n3),这明显不满足题目要求,那么有什么方案可以优化解题的步骤呢?
我们可以首先对整个数组进行升序排序,假设数组的长度为 len,先枚举 a,它在数组中的位置为 i,为了防止重复枚举,我们在位置 [i+1, len) 的范围内枚举 b 和 c。
我们借助双指针 begin 和 end 分别来表示 b 和 c, 最开始 begin = i + 1, end = len - 1。根据
sum = a + b + c
,ans = Math.abs(sum - target) < Math.abs(ans - target) ?sum : ans
更新 ans 的值后,我们依据 target 的值来判断是否有更接近目标的 b 和 c
- 如果 a + b + c ≥ target, end–;(此时 a + b + c 已经大于 target , 如果 c 不变, b 指向后面的数会使 a + b + c 的和变大,即更远离 target , 所以 end–)
- 如果 a + b + c < target, begin++。(此时 a + b + c 小于 target , 如果 b 不变, c 指向前面的数会使 a + b + c 的和变小,即更远离 target , 所以 begin++)
class Solution {
public int threeSumClosest(int[] nums, int target) {
Arrays.sort(nums);
int len = nums.length;
int ans = 100000;
// 枚举 a
for (int i = 0; i < len; ++i) {
// 保证和上一次枚举的元素不相等
if (i > 0 && nums[i] == nums[i - 1]) {
continue;
}
// 使用双指针枚举 b 和 c
int begin = i + 1, end = len - 1;
while (begin < end) {
int sum = nums[i] + nums[begin] + nums[end];
// 如果和为 target 直接返回答案
if (sum == target) {
return target;
}
// 根据差值的绝对值来更新答案
if (Math.abs(sum - target) < Math.abs(ans - target)) {
ans = sum;
}
if (sum > target) {
// 如果和大于 target,移动 c 对应的指针
int temp = end - 1;
// 移动到下一个不相等的元素
while (begin < temp && nums[temp] == nums[end]) {
temp--;
}
end = temp;
} else {
// 如果和小于 target,移动 b 对应的指针
int temp = begin + 1;
// 移动到下一个不相等的元素
while (temp < end && nums[temp] == nums[begin]) {
++temp;
}
begin = temp;
}
}
}
return ans;
}
}