每日一题(2020-07-06)63. 不同路径 II

[63. 不同路径 II]

难度 中等

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。

现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?

img

网格中的障碍物和空位置分别用 10 来表示。

**说明:**mn 的值均不超过 100。

示例 1:

输入:
[
  [0,0,0],
  [0,1,0],
  [0,0,0]
]
输出: 2
解释:
3x3 网格的正中间有一个障碍物。
从左上角到右下角一共有 2 条不同的路径:
1. 向右 -> 向右 -> 向下 -> 向下
2. 向下 -> 向下 -> 向右 -> 向右

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/unique-paths-ii

解法:动态规划

定义到达右下角的走法数为 dp[m][n], 因为右下角只能由它上方或者左方的格子走过去,因此状态转移方程为:

dp[i][j] = dp[i - 1][j] + dp[i][j - 1]

初试状态:

第 1 列的格子只有从其上边格子走过去这一种走法,因此初始化 dp[i][0] 值为 1,存在障碍物时为 0;

第 1 行的格子只有从其左边格子走过去这一种走法,因此初始化 dp[0][j] 值为 1,存在障碍物时为 0。

class Solution {
    public int uniquePathsWithObstacles(int[][] obstacleGrid) {
        if (obstacleGrid == null || obstacleGrid.length == 0) {
            return 0;
        }
        
        // 定义 dp 数组并初始化第 1 行和第 1 列。
        int m = obstacleGrid.length;
        int n = obstacleGrid[0].length;
        int[][] dp = new int[m][n];
        for (int i = 0; i < m && obstacleGrid[i][0] == 0; i++) {
            dp[i][0] = 1;
        }
        for (int j = 0; j < n && obstacleGrid[0][j] == 0; j++) {
            dp[0][j] = 1;
        }

        // 根据状态转移方程 dp[i][j] = dp[i - 1][j] + dp[i][j - 1] 进行递推。
        for (int i = 1; i < m; i++) {
            for (int j = 1; j < n; j++) {
                if (obstacleGrid[i][j] == 0) {
                    dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
                }
            }
        }
        return dp[m - 1][n - 1];
    }
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

两只Tigers跑得快

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值