xgboost的调参步骤

参数含义是否需要调参
booster[默认gbtree]迭代模型 gbtree或gbliner
silent[默认0]1时不输出信息
nthread[默认最大可能线程数]
eta[默认0.3]学习率是0.01-0.2
min_child_weight[默认1]最小叶子节点样本权重和;回归问题里min_child_weight代表的意思是,儅一個節點下的樣本數小於給定的閾值時,則停止分裂
max_depth[默认6]树的最大深度是3-10
max_leaf_nodes树上最大叶子数量
gamma[默认0]节点分类所需最小损失函数下降值
max_delta_step[默认0]每棵树权重改变的最大步长,一般不需要
subsample对于每棵树随机采样的比例,0.5-1
colsample_bytree[默认1]控制每棵随机采样的列数的占比0.5-1
colsample_bylevel[默认1]控制树的每一级的每一次分裂,对列数的采样的占比。
lambda[默认1]L2正则化项的权重
alpha权重的L1正则化项
scale_pos_weight调节正负样本不均衡问题;用于加快收敛
objective[默认reg:linear]linear/binary/multi/softprob
eval_metric度量方式回归默认rmse分类默认error
seed

调参的步骤是

  1. 选择较高的学习速率(learning rate)。一般情况下,学习速率的值为0.1。但是,对于不同的问题,理想的学习速率有时候会在0.05到0.3之间波动。选择对应于此学习速率的理想决策树数量。XGBoost有一个很有用的函数“cv”,这个函数可以在每一次迭代中使用交叉验证,并返回理想的决策树数量。
  2. 对于给定的学习速率和决策树数量,进行决策树特定参数调优(max_depth, min_child_weight, gamma, subsample, colsample_bytree)。
  3. xgboost的正则化参数的调优。(lambda, alpha)。这些参数可以降低模型的复杂度,从而提高模型的表现。
  4. 降低学习速率,确定理想参数。

定义一个函数方便后续的交叉验证

import pandas as pd
import numpy as np
import xgboost as xgb
from xgboost.sklearn import XGBClassifier
from sklearn import cross_validation, metrics   
from sklearn.grid_search import GridSearchCV   #网格搜索

import matplotlib.pylab as plt
%matplotlib inline
def modelfit(alg, dtrain, predictors,useTrainCV=True, cv_folds=5, early_stopping_rounds=50):
   if useTrainCV:
        xgb_param = alg.get_xgb_params()
        xgtrain = xgb.DMatrix(dtrain[predictors].values, label=dtrain[target].values)
        xgtest = xgb.DMatrix(dtest[predictors].values)
        cvresult = xgb.cv(xgb_param, xgtrain, num_boost_round=alg.get_params()['n_estimators'], nfold=cv_folds,
            metrics='auc', early_stopping_rounds=early_stopping_rounds, show_progress=False)
        alg.set_params(n_estimators=cvresult.shape[0])
    
    #Fit the algorithm on the data
    alg.fit(dtrain[predictors], dtrain['Disbursed'],eval_metric='auc')
        
    #Predict training set:
    dtrain_predictions = alg.predict(dtrain[predictors])
    dtrain_predprob = alg.predict_proba(dtrain[predictors])[:,1]
        
    #Print model report:
    print "\nModel Report"
    print "Accuracy : %.4g" % metrics.accuracy_score(dtrain['Disbursed'].values, dtrain_predictions)
    print "AUC Score (Train): %f" % metrics.roc_auc_score(dtrain['Disbursed'], dtrain_predprob)
    
#     Predict on testing data:
    dtest['predprob'] = alg.predict_proba(dtest[predictors])[:,1]
    results = test_results.merge(dtest[['ID','predprob']], on='ID')
    print 'AUC Score (Test): %f' % metrics.roc_auc_score(results['Disbursed'], results['predprob'])
                
    feat_imp = pd.Series(alg.booster().get_fscore()).sort_values(ascending=False)
    feat_imp.plot(kind='bar', title='Feature Importances')
    plt.ylabel('Feature Importance Score')

第一步 确定学习率和树个数
给其他参数一个初始值
在学习率为0.1时找出理想的决策树数目

xgb1 = XGBClassifier(
 learning_rate =0.1,
 n_estimators=1000,
 max_depth=5,#3-10之间
 min_child_weight=1,
 gamma=0,#节点分类所需最小损失函数下降值
 subsample=0.8,#典型值0.5-0.9
 colsample_bytree=0.8,#典型值0.5-0.9
 objective= 'binary:logistic',
 nthread=4,
 scale_pos_weight=1,
 seed=27)
modelfit(xgb1, train, predictors)

第二步 max_depth 和min_weight参数调优
先粗调再细调

param_test1 = {
 'max_depth':range(3,10,2),
 'min_child_weight':range(1,6,2)
}
gsearch1 = GridSearchCV(    estimator = XGBClassifier( learning_rate =0.1, n_estimators=140, max_depth=5,
min_child_weight=1, gamma=0, subsample=0.8, colsample_bytree=0.8,
 objective= 'binary:logistic', nthread=4,     scale_pos_weight=1, seed=27), 
 param_grid = param_test1,     scoring='roc_auc',n_jobs=4,iid=False, cv=5)
 
gsearch1.fit(train[predictors],train[target])
gsearch1.grid_scores_, gsearch1.best_params_,     gsearch1.best_score_

在找出两个值的粗略最优值后再其附近进行一次细调

param_test2 = {
 'max_depth':[4,5,6],
 'min_child_weight':[4,5,6]
}
gsearch2 = GridSearchCV(estimator = XGBClassifier(     learning_rate=0.1, n_estimators=140, max_depth=5,
 min_child_weight=2, gamma=0, subsample=0.8, colsample_bytree=0.8,
 objective= 'binary:logistic', nthread=4, scale_pos_weight=1,seed=27), 
 param_grid = param_test2, scoring='roc_auc',n_jobs=4,iid=False, cv=5)
gsearch2.fit(train[predictors],train[target])
gsearch2.grid_scores_, gsearch2.best_params_,     gsearch2.best_score_

第三步 gamma参数调优

param_test3 = {
 'gamma':[i/10.0 for i in range(0,5)]
}
gsearch3 = GridSearchCV(estimator = XGBClassifier( learning_rate =0.1, n_estimators=140, max_depth=4,
 min_child_weight=6, gamma=0, subsample=0.8, colsample_bytree=0.8,
 objective= 'binary:logistic', nthread=4, scale_pos_weight=1,seed=27), 
 param_grid = param_test3, scoring='roc_auc',n_jobs=4,iid=False, cv=5)
gsearch3.fit(train[predictors],train[target])
gsearch3.grid_scores_, gsearch3.best_params_, gsearch3.best_score_

第四部 调整subsample和colsample_bytree参数

param_test4 = {
 'subsample':[i/10.0 for i in range(6,10)],
 'colsample_bytree':[i/10.0 for i in range(6,10)]
}
gsearch4 = GridSearchCV(estimator = XGBClassifier( learning_rate =0.1, n_estimators=177, max_depth=3,
 min_child_weight=4, gamma=0.1, subsample=0.8, colsample_bytree=0.8,
 objective= 'binary:logistic', nthread=4, scale_pos_weight=1,seed=27), 
 param_grid = param_test4, scoring='roc_auc',n_jobs=4,iid=False, cv=5)
gsearch4.fit(train[predictors],train[target])
gsearch4.grid_scores_, gsearch4.best_params_, gsearch4.best_score_

第五步 正则化参数调优
用来减低过拟合,与gamma函数起着类似的作用

param_test6 = {
 'reg_alpha':[1e-5, 1e-2, 0.1, 1, 100]
}
gsearch6 = GridSearchCV(estimator = XGBClassifier( learning_rate =0.1, n_estimators=177, max_depth=4,
 min_child_weight=6, gamma=0.1, subsample=0.8, colsample_bytree=0.8,
 objective= 'binary:logistic', nthread=4, scale_pos_weight=1,seed=27), 
 param_grid = param_test6, scoring='roc_auc',n_jobs=4,iid=False, cv=5)
gsearch6.fit(train[predictors],train[target])
gsearch6.grid_scores_, gsearch6.best_params_, gsearch6.best_score_

第 6步 降低学习速率

xgb4 = XGBClassifier(
 learning_rate =0.01,
 n_estimators=5000,
 max_depth=4,
 min_child_weight=6,
 gamma=0,
 subsample=0.8,
 colsample_bytree=0.8,
 reg_alpha=0.005,
 objective= 'binary:logistic',
 nthread=4,
 scale_pos_weight=1,
 seed=27)
modelfit(xgb4, train, predictors)

xgb.cv函数

def cv(params, dtrain, num_boost_round=10, nfold=3, stratified=False, folds=None,
       metrics=(), obj=None, feval=None, maximize=False, early_stopping_rounds=None,
       fpreproc=None, as_pandas=True, verbose_eval=None, show_stdv=True,
       seed=0, callbacks=None, shuffle=True)

xgb_param 可以用xgb.XGBClassifier().get_xgb_params()获得

dtrain则是用xgb.DMatrix(x_train,y_train)获得。

num_boost_round是最大迭代次数,

early_stopping_rounds,测试集50 round没有提升迭代停止,输出最好的轮数,

verbose_eval=10意思是每10轮打印一次评价指标,

show_stdv=Flase表示不打印交叉验证的标准差。

nfold表示几折

folds可以接受一个KFold或者StratifiedKFold对象

metrics是一个字符串或者列表,表示评价指标,一般都用‘auc’

另外xgb.cv返回的是一个dataframe

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值