自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

jho9o5的博客

学而不思则罔!

  • 博客(62)
  • 资源 (3)
  • 问答 (1)
  • 收藏
  • 关注

原创 【3】卷积神经网络的本质探索

引子  在深度神经网络的领域下,卷积神经网络(Convolutional Neural Networks,CNN )是最为成功的DNN的特例之一,CNN广泛应用于图像识别领域,另外它也可以应用于NLP领域。因此,在学完前面两节的基础上,我们赶紧来学学传说中的卷积神经网络吧!...

2020-07-17 09:35:53 1635

原创 【实战篇】PyTorch入门指南

计算机程序通常由两个主要部分组成:代码和数据。在传统的编程中,程序员的工作是直接编写软件或代码,但是在深度学习和神经网络中,可以说软件就是网络本身,特别是在训练过程中自动产生的网络权值。数据是深度学习的主要组成部分,尽管让我们的神经网络从数据中学习是我们作为神经网络程序员的任务,但我们仍然有责任了解我们实际用于训练的数据的性质和历史。1. 什么是MNIST数据集  MNIST数据集,全称是...

2019-12-06 17:08:36 890

原创 【基础篇】PyTorch入门指南

PyTorch是一个深度学习框架和一个科学计算包,这是PyTorch核心团队对PyTorch的描述,PyTorch的科学计算方面主要是PyTorch张量(tensor)库和相关张量运算的结果。A tensor is an n-dimensional array(ndarray). 举个例子,PyTorch的torch.Tensor对象就是由Numpy的ndarray对象创建来的,两者之间的转...

2019-12-04 22:34:58 770

原创 几道经典的概率题

1. 设某种病菌在人口中的带菌率为0.03,当检查时,由于技术及操作的不完善以及种种特殊原因,使带菌者未必会检查出阳性反应,而不带菌者也可能呈阳性反应。 假定:   P(阳性 | 带菌) = 0.99,    P(阴性 | 带菌) = 0.01   P(阳性 | 不带菌) = 0.05,   P(阴性 | 不带菌) = 0.95 现在某人检出阳性,问“他带菌”的概率为多少?...

2019-09-11 10:38:31 4137

原创 剑指offer习题笔记【Python版】

1. 硬币问题牛家村的货币是一种很神奇的连续货币,他们货币的最大面额是n,并且一共有面额为1,2,3,…,n,n种面额的硬币。牛牛每次购买商品都会带上所有面额的硬币,支付时会选择给出硬币数量最少的方案。(每种面额的硬币有无限多个)输入为两个整数m和n,表示货币的最大面额和商品的价格,输出为牛牛最少给出的硬币数量。分析:  显然这是一个贪心算法,即尽可能多的用最大面额的硬币,如果剩余...

2019-08-28 14:15:11 4070

翻译 时间序列学习笔记

1.什么是时间序列?时间序列是一系列的观察点按照时间顺序排列的集合。时间序列是无处不在的:一个人的几个月以来的血压变化情况某个明星的欢迎度评分变化趋势某城市近几年的降雨量某只股票的变化趋势时间序列遍布在医疗、科技、金融等各个领域。1.1 我们可以把高维的形状转化为一维的信号,然后移除信号中的scalescalescale和offsetoffsetoffset,再送给我们的算法进...

2019-06-12 16:54:56 684 1

翻译 【Python】时间序列分析完整过程

1. 导言1.1 基本定义  根据维基百科上对时间序列的定义,我们简单将其理解为:时间序列:一系列以时间顺序作为索引的数据点的集合。  因此,时间序列中的数据点,是围绕着相对确定的时间戳组织在一起的,与随机样本相比,它们包含了一些我们待提取的其他信息。  咱们先来看看,对时间序列数据分析,需要用到哪些库吧 ~import numpy as np ...

2019-05-20 10:48:21 61422 26

原创 【4】循环神经网络的直观理解

引子  人类不会每时每刻都从头开始思考。正如你在阅读这篇文章的时候,你会根据前面出现的词语,来思考后面的每一个词语的含义。换句话说,你的大脑不会把之前阅读到的信息“扔掉”,而是将它们“存储”下来,用于对后续词语的理解。  然而,传统的神经网络(也包括前面说的CNN),并不能做到这一点,这可是一个挺大的缺点。比如说,你想对电影中下一秒将会发生的事件进行预测,你该怎么做呢?目前还不清楚传统的神经...

2019-05-14 11:39:42 2885

原创 Ubuntu 双显示器修改登录背景

1. 配置环境:系统:Ubuntu 18.04双显示器:两个显示器均是1920*1080的分辨率(配置应该与显示器分辨率无关)2.拷贝图片到指定目录cp currentdir/mypicture.jpg /usr/share/backgrounds/3.修改系统登录界面配置文件sudo vi /etc/alternatives/gdm3.css找到默认的这个部分#lo...

2019-05-08 11:35:34 784

原创 【2】深度神经网络的损失函数/激活函数

1.平方差损失函数 && Sigmoid激活函数1.1 Sigmoid函数       Sigmoid函数的表达式为:σ(z)=11+e−z\sigma(z)=\frac{1}{1+e^{-z}}σ(z)=1+e−z1​       对...

2019-05-07 09:52:39 1080

原创 【1】深度神经网络的前向/反向传播算法

1.感知机1.1 基本介绍        神经网络的发展,最早可以追溯到感知机模型,我们不妨理解为当前的神经网络模型,都是从感知机进化而来的,因此,在正式学习神经网络之前,认识一下它的“祖先”还是很有必要的。        &nbsp...

2019-05-06 15:34:38 1238

原创 【For非数学专业】通俗理解似然函数、概率、极大似然估计和对数似然

       似然函数,在机器学习的算法模型中,可谓是屡见不鲜了,每次总觉得自己已经掌握了这个概念,但是遇到具体的情况后,发现还是很难说清楚,于是根据wiki上关于Likelihood function的解释,以及个人的学习理解,整理笔记如下:       ...

2019-04-03 19:52:12 9808 14

原创 轻松看懂P(Y=y|x;θ)表示的含义

       在机器学习中,特别是学习到关于概率/似然估计方面的内容,经常看到类似P(Y=y|x;θ)的表达,对于这个概率表达式一直理解的不清楚,于是在网上查阅资料,整理如下:       我们先来逐个分析里面的每一个变量。对于符号P(Y=y|x;θ),Y表...

2019-04-03 16:53:06 10425 3

原创 Anaconda安装tensorflow-gpu报错UnsatisfiableError的解决办法

       最近实验室购买了两块GPU的显卡,于是想玩一下tensorflow-gpu版本。我一向偷懒(省心)喜欢用Anaconda,所以先在服务器上配置了Anaconda的环境(官网最新的 .sh 文件),由于服务器上已经配置好了显卡驱动balabala等环境,准备直接根据命令conda install tensorflow...

2019-04-02 19:27:37 2133

翻译 如何向一个五岁的小孩介绍SVM?

想象一下,在一张桌子上,摆放着两种不同颜色的小球。          &a

2019-03-07 17:30:24 352

转载 PCA数学原理【全】

PCA(Principal Component Analysis)是一种常用的数据分析方法。PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降维。网上关于PCA的文章有很多,但是大多数只描述了PCA的分析过程,而没有讲述其中的原理。这篇文章的目的是介绍PCA的基本数学原理,帮助读者了解PCA的工作机制是什么.当然我并不打算把文章写成纯数学...

2018-12-14 10:11:01 396

原创 使用GridSearch对xgboost进行调参(全部流程)

本篇博客的大纲:导入相关的库/模块初始化xgb.XGBRegressor模型的默认参数按照顺序,每次选取一个或多个相关参数,给出取值区间,进行GridSearch针对网格搜索给出的最佳参数,再划定更详细的区间,将最优参数精细化找到所有属性的最佳参数,与原始模型进行结果对比,验证是否提高了模型的精度...

2018-12-03 11:38:23 33448 8

原创 一步一步玩转树莓派~

1.树莓派的装机教程(for windows)步骤:镜像文件和镜像写入SD卡工具的下载RASPBIAN系统烧录至micro SD卡设备连网外接显示器或者SSH连接具体:镜像文件地址 ,选择RASPBIAN STRETCH WITH DESKTOP 版本的ZIP文件,这是图形化界面版本的系统,另一个是轻量级的不带桌面的版本;镜像写入SD卡工具地址,点击download下载到本地...

2018-10-12 11:43:09 1070 2

原创 [后端开发]1.SpringBoot快速入门

目录开发环境配置第一个SpringBoot程序自定义属性配置Controller的使用spring-data-jpa事务管理

2018-09-20 09:02:11 846

原创 [LeetCode]1.TwoSum(Python实现)

1.题目描述给定一个整数数组和一个目标值,找出数组中和为目标值的两个数。你可以假设每个输入只对应一种答案,且同样的元素不能被重复利用示例: 给定 nums = [2, 7, 11, 15], target = 9 因为 nums[0] + nums[1] = 2 + 7 = 9 所以返回 [0, 1]2.代码实现1. 方法一:[分析]:  &nbs...

2018-08-28 17:59:00 8257 3

原创 26.【终极】实战研究三:MNIST手写体数字图片识别

#-*- coding:utf-8 -*-import pandas as pd train = pd.read_csv('/Users/jianghui/Desktop/kaggle/MNIST/train.csv')test = pd.read_csv('/Users/jianghui/Desktop/kaggle/MNIST/test.csv')#查验数据信息print tr...

2018-04-21 12:16:16 756 2

原创 25.【终极】实战研究二:IMDB影评得分估计

1.用pandas导入训练与测试数据集import pandas as pd #这里的read_csv方法,加上了sep参数,把原始数据的每一行按'\t'进行分割,默认是','train = pd.read_csv('/Users/jianghui/Desktop/kaggle/IMDB/labeledTrainData.tsv',sep='\t')test = pd.read_c...

2018-04-19 18:40:12 2741 14

原创 24.【终极】实战研究一:泰坦尼克号罹难乘客预测

1. 导入数据#-*- coding:utf-8 -*-import pandas as pd train = pd.read_csv('/Users/jianghui/Desktop/kaggle/titanic/train.csv')test = pd.read_csv('/Users/jianghui/Desktop/kaggle/titanic/test.csv')pri...

2018-04-19 15:55:38 546

原创 《机器学习实战》完整总结

1.首先从图片的角度,对机器学习算法、实战有一个全面而感性的认识。 1.1 机器学习算法思维导图 1.2 监督学习经典模型树状图 1.3 Scikit-learn工具包使用网状图 1.4 监督学习流程图 2.剖析监督学习流程图的每一个步骤(by code)。 2.1 原始数据收集 (1)导入本地数据:import pandas as pd train ...

2018-04-07 18:24:18 13372 5

原创 23.【进阶】流行库模型--Tensorflow&SKFlow

Tensorflow用以编写程序的计算机软件;计算机软件开发工具;可用于人工智能、深度学习、高性能计算、分布式计算、虚拟化和机器学习这些领域;软件库可用于通用目的的计算、数据收集的操作、数据变换、输入输出、人工智能等领域的建模和测试软件可用作应用于人工智能等领域的应用程序接口(API)#-*- coding:utf-8 -*-#1.使用Tensorflow自定义一个线性...

2018-04-06 16:36:22 688

原创 22.【进阶】流行库模型--XGBoost

XGBoost模型Boosting 分类器属于集成学习模型,它的基本思想是把成百上千个分类准确性较低的树模型组合起来,成为一个准确率很高的模型;特点是不断迭代,每次迭代完成生成一棵新的树,如何在每一步生成合理的树,有许多不同的方法,比如Gradient Tree Boosting,在生成每一棵树的时候,采用梯度下降的思想,以之前生成的所有决策树为基础,向着minimize目标函数的方向再进...

2018-04-06 15:12:49 349

原创 21.【进阶】流行库模型--word2vec

词的向量化表示word2vec模型的采用的思想是,n元语法模型(n-gram model),即假设一个词只与周围n个词有关,而与文本中的其他词无关首先,我们要明确,句子中的连续词汇片段,也被称为上下文context,词汇之间的联系就是通过无数个这样的上下文建立的。以The cat is walking in the bedroom.为例,如果我们需要这句话中上下文数量为4(每一个片段中有...

2018-04-06 11:03:32 298

原创 20.【进阶】流行库模型--NLTK(Nature Language Toolkit)

#-*- coding:utf-8 -*-#如何将下面两行句子向量化sentence1 = 'The cat is walking in the bedroom.'sentence2 = 'A dog was running across the kitchen.'#1.使用词袋法进行向量化#词袋法,顾名思义就是讲所有样本中出现的单词,形成一个列向量,或者称之为词表,#然后每一个训...

2018-04-06 10:26:51 417

原创 19.【进阶】超参数搜索--网格搜索&并行搜索

超参数搜索前面所提到的模型配置,我们一般统称为模型的超参数,如K近邻算法中的k值、支持向量机中不同的核函数等,多数情况下,超参数等选择是无限的,除了人工预设几种超参数的组合以外,还可以通过启发式的搜索算法对超参数组合进行调优。这种启发式的搜索算法对超参数搜索算法,被称之为网格搜索。(如果人工处理所有可能的超参数组合,通常的办法是,根据超参数的维度,列成相应的表格,比如说k的取值有[2,3,...

2018-04-05 17:52:20 3184

原创 18.【进阶】模型正则化--L1&L2范数正则化

#-*- coding:utf-8 -*-#模型正则化:目的是提高模型在未知测试数据上的泛化力,避免参数过拟合#常用方法:在原模型优化目标的基础上,增加对参数的惩罚(penalty)项#拓展一下L0范数、L1范数、L2范数的概念#L0范数是指向量中非0的元素的个数,如果我们用L0范数来规则化一个参数矩阵W的话,就是希望W的大部分元素都是0,实现稀疏但是NP-hard。#L1范数是指向量...

2018-04-05 17:09:13 448 1

原创 17.【进阶】模型正则化--欠拟合与过拟合问题

#-*- coding:utf-8 -*-#学习目标:以“披萨饼价格预测”为例,认识欠拟合和过拟合的问题#假定只考虑披萨的尺寸和售价的关系,X为尺寸,y代表售价X_train = [[6],[8],[10],[14],[18]]y_train = [[7],[9],[13],[17.5],[18]]#*****************************************...

2018-04-05 15:57:07 281

原创 16.【进阶】特征提升之特征筛选----feature_selection

#-*- coding:utf-8 -*-#特征筛选的目标:一句话来说就是去冗余特征;与PCA不同,不会修改特征值,而是寻找那些对模型性能提升较大的少量特征#使用Titanic数据集,通过特征筛选的方法一步步提升决策树的预测性能import pandas as pdtitanic = pd.read_csv('http://biostat.mc.vanderbilt.edu/wiki...

2018-04-04 21:41:49 1373

原创 15.【进阶】特征提升之特征抽取--CountVectorizer和TfidfVectorizer

#学习目标1:使用CountVectorizer和TfidfVectorizer对非结构化的符号化数据(如一系列字符串)进行特征抽取和向量化from sklearn.datasets import fetch_20newsgroups#从互联网上即时下载新闻样本,subset = 'all'参数表示下载全部近2万条文本文件# subset : 'train' or 'test', 'all...

2018-04-04 20:29:31 1105

原创 14.【进阶】特征提升之特征抽取----DictVectorizer

说明:DictVectorizer的处理对象是符号化(非数字化)的但是具有一定结构的特征数据,如字典等,将符号转成数字0/1表示。#-*- coding:utf-8 -*-#学习目标:使用DictVectorizer对使用字典存储的数据进行特征抽取和向量化#定义一组字典列表,用来表示多个数据样本(每个字典代表一个数据样本)measurements = [{'city':'Beij...

2018-04-04 18:22:37 9678

原创 13.【基础】手写体数字图像--经PCA降维后的LinearSVC

本文所有实现代码均来自《Python机器学习及实战》#-*- coding:utf-8 -*-#分别导入numpy、matplotlib、pandas,用于数学运算、作图以及数据分析import numpy as npimport matplotlib.pyplot as pltimport pandas as pd #第一步:使用pandas读取训练数据和测试数据digi...

2018-04-03 21:08:19 1095

原创 “肘部”观察法示例

本文所有实现代码均来自《Python机器学习及实战》#-*- coding:utf-8 -*-import numpy as npfrom sklearn.cluster import KMeansfrom scipy.spatial.distance import cdistimport matplotlib.pyplot as plt#使用均匀分布函随机三个簇,每个粗周围...

2018-04-03 18:07:17 5753

原创 12.【基础】手写体数字图像聚类--KMeans

本文所有实现代码均来自《Python机器学习及实战》#-*- coding:utf-8 -*-#分别导入numpy、matplotlib、pandas,用于数学运算、作图以及数据分析import numpy as npimport matplotlib.pyplot as pltimport pandas as pd #第一步:使用pandas读取训练数据和测试数据digi...

2018-04-03 17:42:13 4577 2

原创 11.【基础】波士顿房价预测--Ensemble(Regressor)

本文所有实现代码均来自《Python机器学习及实战》#-*- coding:utf-8 -*-#说明:前面的数据读取、分割、标准化处理还是采用上一讲的代码,只是模型的训练换成了集成模型#第一步:读取波士顿房价数据from sklearn.datasets import load_bostonboston = load_boston()print boston.DESCR#从...

2018-04-02 17:51:43 1324

原创 10.【基础】波士顿房价预测--DecisionTreeRegressor

本文所有实现代码均来自《Python机器学习及实战》#-*- coding:utf-8 -*-#说明:前面的数据读取、分割、标准化处理还是采用上一讲的代码,只是模型的训练换成了回归树模型#第一步:读取波士顿房价数据from sklearn.datasets import load_bostonboston = load_boston()print boston.DESCR#...

2018-04-02 17:35:28 1053

原创 9.【基础】波士顿房价预测--KNN Regression

本文所有实现代码均来自《Python机器学习及实战》#-*- coding:utf-8 -*-#说明:前面的数据读取、分割、标准化处理还是采用上一讲的代码,只是模型的训练换成了KNN回归模型#第一步:读取波士顿房价数据from sklearn.datasets import load_bostonboston = load_boston()print boston.DESCR...

2018-04-02 17:20:05 4062

梯度下降的优化算法概览.pdf

本文档我学习梯度下降优化算法的总结,开头是深度学习的基本介绍,了解为什么要用梯度下降算法,以及传统的梯度下降算法的弊端,后面的主要章节是从momentum和adaptive两方面,进行梯度下降优化算法的展开,有详细的推导过程和公式图解,基本涉及了目前绝大部分的深度学习优化器,对于想深入了解深度学习优化的同学很有帮助。

2019-06-28

kaggle竞赛进前5%的实战思路.pptx

kaggle比赛流程,每一步骤详细介绍. 1.识别问题 2.探索数据 3.数据清洗 4.特征工程 5.模型建立 6.集成学习 7.预测结果

2018-12-17

Android实现MQTT通信的demo(完整代码)

这是我自己在玩树莓派的时候,想实现一个远程控制小灯开关的功能,我在树莓派上部署一个消息订阅服务,用python实现的,然后再用这个代码实现app的开发,因为我把broker放在了公网上,亲测把这个APP发给了几百公里以外的妹子,然后她成功控制了我这里小灯的开关,可以说是有点装逼了,哈哈哈~博客地址在https://blog.csdn.net/jh1137921986/article/details/83023608,想要交流的可以在csdn私信我~

2018-10-15

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除