深度学习
文章平均质量分 95
深度学习
凌逆战
保持真诚和善良,学会成熟,早睡早起,寻回热爱与运动,实现自我成就。关注我,我们就是朋友,互相进步呀
展开
-
神经网络模型的参数量和计算量
其实模型的参数量好算,但浮点运算数并不好确定,我们一般也就根据参数量直接估计计算量了。但是像卷积之类的运算,它的参数量比较小,但是运算量非常大,它是一种计算密集型的操作。反观全连接结构,它的参数量非常多,但运算量并没有显得那么大。FLOPs(Floating-point Operations):浮点运算次数,理解为计算量,可以用来衡量算法的复杂度。一个乘法或一个加法都是一个FLOPsFLOP...原创 2022-09-08 14:02:00 · 4336 阅读 · 1 评论 -
pytorch训练GAN时的detach()
我最近在学使用Pytorch写GAN代码,发现有些代码在训练部分细节有略微不同,其中有的人用到了detach()函数截断梯度流,有的人没用detch(),取而代之的是在损失函数在反向传播过程中将backward(retain_graph=True),本文通过两个 gan 的代码,介绍它们的作用,并分析,不同的更新策略对程序效率的影响。 这两个 GAN 的实现中,有两种不同的训练策...原创 2020-11-09 23:40:00 · 5226 阅读 · 11 评论 -
这可能是国内最全面的char RNN注释
作者:凌逆战时间:2019年11月1日博客园地址:https://www.cnblogs.com/LXP-Never/p/11543152.htmlchar RNN代码来源于https://github.com/hzy46/Char-RNN-TensorFlow前言本人在学习char RNN的过程中,遇到了很多的问题,但是依然选择一行代码一行代码的啃下来,并且注释好,我...原创 2019-09-18 16:09:00 · 717 阅读 · 4 评论 -
通过代码学习RNN,彻底弄懂time_step
文章转载自凌逆战的博客园—通过代码学习RNN,彻底弄懂time_step - 凌逆战 - 博客园这篇博客不是一篇讲解原理的博客,这篇博客主要讲解tnesorlfow的RNN代码结构,通过代码来学习RNN,以及讲解time_steps,如果这篇博客没有让你明白time_steps,欢迎博客下面评论交流。我曾翻阅各大网站,各大博客,他们的对RNN中time_steps的讲解,都没有一个让人醍醐灌顶...原创 2019-09-16 09:21:04 · 1133 阅读 · 0 评论