背包问题

一.0-1背包

1.问题描述

0-1背包问题即给定n个大小为s1,s2,s3,s4...sn的物品,每个物品的价值为c1,c2,c3,c4...cn,背包总大小为V,问在不超过背包容量的情况下,背包能装下物品的最大价值是多少。

 

2.动态规划解决0-1背包

假设由一个容量为5的背包,总共有四件物品,它们的大小为:1,2,3,2。它们的价值为:3,4,7,5。

我们制作一张表格,第i行代表计算了第i件物品的情况,第j列代表了当背包容量还剩下j时的情况。

 V=0V=1V=2V=3V=4V=5
物品1033333
物品2034777
物品303471011
物品403581012

转化为代码即:

#include <iostream>
#include <vector>
#include <algorithm>

using namespace std;

int package0_1(vector<int> &s, vector<int> &c, int V) 
{
	vector<vector<int>>  matrix(s.size(), vector<int>(V + 1, 0));

	// 初始化矩阵为放入第一个物品后的情况
	for (size_t vol = 0; vol <= V; vol++) {
		if (vol >= s[0]) {
			matrix[0][vol] = c[0];
		}
	}

    /*【注】:里外两层for循环不可交换,因为此时表示的是每件无品最多放入一次
    *       而交换后则表示每件物品可以放入多次,之后将该处此题的变种,即每种物品数量不变(完全背包)
    */
	for (size_t i = 1; i < s.size(); i++) {
		for (size_t vol = 0; vol <= V; vol++) {
			matrix[i][vol] = matrix[i - 1][vol]; // 初始为背包剩余大小为vol不放物品i的情况
			if (vol >= s[i]) {	// 若背包的剩余大小大于等于当前物品的体积,则尝试放入
				// 取放与不放两种情况下的价值大者
				// c[vol] + matrix[i - 1][vol - s[vol]]为当前物品的价值,加上背包剩余容量
                                // 去掉当前物品大小后的容量能取到的最好情况
				matrix[i][vol] = std::max(matrix[i][vol], c[i] + matrix[i - 1][vol - s[i]]);
			}
		}
	}
	return matrix[s.size() - 1][V];
}


int main()
{
	vector<int> s = { 1, 2, 3, 2 };
	vector<int> c = { 3, 4, 7, 5 };
	std::cout << package0_1(s, c, 5); // 输出为12
}

【注】:其实仔细想想这和Dijkstra有异曲同工之妙

【注】:此题例外两层for循环不可交换!!!!!!!!

 

通过上面的推到我们发现数组的每一层只与上一层有关,因此可简化为一维数组,只是为了防止计算结果被覆盖,应该从后向前计算。代码更改为如下行式:

#include <iostream>
#include <vector>
#include <algorithm>

using namespace std;


int package0_1(vector<int> &s, vector<int> &c, int V)
{
	vector<int> arr(V + 1, 0);

	for (size_t vol = 0; vol <= V; vol++) {
		if (s[0] <= vol) {
			arr[vol] = s[0];
		}
	}

	for (size_t i = 1; i < s.size(); i++) {
		for (int vol = V; vol >= 0; vol--) {
			if (s[i] <= vol) {
				arr[vol] = std::max(arr[vol], c[i] + arr[vol - s[i]]);
			}
		}
	}
	return arr[V];

}

int main()
{
	vector<int> s = { 1, 2, 3, 2 };
	vector<int> c = { 3, 4, 7, 5 };

	std::cout << package0_1(s, c, 5);;
}

【注】:一道二维背包的题:一和零

可继续简写为:

#include <iostream>
#include <vector>
#include <algorithm>

using namespace std;


int package0_1(vector<int>& s, vector<int>& c, int V)
{
	vector<int> arr(V + 1, 0);

	for (size_t i = 0; i < s.size(); i++) {
		for (int vol = V; vol >= 0; vol--) {
			if (s[i] <= vol) {
				arr[vol] = std::max(arr[vol], c[i] + arr[vol - s[i]]);
			}
		}
	}


	return arr[V];
}

int main()
{
	vector<int> s = { 1, 2, 3, 2 };
	vector<int> c = { 3, 4, 7, 5 };

	std::cout << package0_1(s, c, 5);;
}

 

二.完全背包

题目依然如前,但此时每种物品数量变为无限,代码如下:

int packageAll(vector<int>& s, vector<int>& c, int V)
{
    vector<int> arr(V + 1, 0);

    // 注意此时交换了两层for循环的顺序,且vol从1至V而非从V至0
    for (int vol = 1; vol <= V; vol++) {
        for (size_t i = 0; i < s.size(); i++) {
            if (s[i] <= vol) {
                arr[vol] = std::max(arr[vol], c[i] + arr[vol - s[i]]);
            }
        }
    }

    return arr[V];
}

int main()
{
    vector<int> s = { 1, 2, 3, 2 };
    vector<int> c = { 3, 4, 7, 5 };

    std::cout << packageAll(s, c, 5); // 输出为15,即选三个体积为1的
}

【总结】:其实0-1背包可以看作这样一个过程,即在已尝试放入前一件物品的基础上尝试放入下一件物品,并检查是否有更优解。而完全背包则是尝试使用物品去填充满背包,而不论个数,之后再尝试放入下一物品,亦不论个数,且检查是否有更优解。

这其实也说明了为什么0-1背包必须从V->0,因为每件物品只能放一次,因此而放下一件物品需要参考前一件物品放入后的情况,为了防止先被覆盖,而必须从V->0。

而完全背包需从1->v的原因是,每件物品可以放入数次,后面在更大容量情况下的方法需要参考在更小容量下放入前面物品和当前物品后的最优值。(0-1背包若从1->V放则在更大容量下放入当前物品参考的是在更小容量下放入之前物品和当前物品的最优解,也就是说当前物品可以被放入多次了)

 

 

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值