1045. 快速排序(25)

著名的快速排序算法里有一个经典的划分过程:我们通常采用某种方法取一个元素作为主元,通过交换,把比主元小的元素放到它的左边,比主元大的元素放到它的右边。 给定划分后的N个互不相同的正整数的排列,请问有多少个元素可能是划分前选取的主元?

例如给定N = 5, 排列是1、3、2、4、5。则:

1的左边没有元素,右边的元素都比它大,所以它可能是主元;
尽管3的左边元素都比它小,但是它右边的2它小,所以它不能是主元;
尽管2的右边元素都比它大,但其左边的3比它大,所以它不能是主元;
类似原因,4和5都可能是主元。
因此,有3个元素可能是主元。

输入格式:

输入在第1行中给出一个正整数N(<= 105); 第2行是空格分隔的N个不同的正整数,每个数不超过109。

输出格式:

在第1行中输出有可能是主元的元素个数;在第2行中按递增顺序输出这些元素,其间以1个空格分隔,行末不得有多余空格。

输入样例:

5
1 3 2 4 5

输出样例:

3
1 4 5

解题思路:首先存入数组的时候,就比较一次大小,将当前下标前面的最大数存入另一个数组中,便于之后比较。然后从后向前遍历,用一个变量min来记录最小数,在遍历的过程中和最大数数组比较,若大于对应下标的最大数数组,且小于后面的最小数,则将该数push进作为结果的数组。最后逆序输出即可。

#include <iostream>
#include <vector>

using namespace std;

int main(){
    int n;
    scanf("%d", &n);
    int *v=new int[n],*big=new int[n]; //big数组存入当前下标前面的最大的数 
    int max = 0;
    for(int i = 0; i < n; ++i){
        scanf("%d", &v[i]);
        big[i] = max;
        if(v[i] > max){ //更新最大值 
            max = v[i];
        }
    }
    int min = 1000000001;
    vector<int> result; 
    for(int i = n - 1; i >= 0; --i){
        if(v[i] > big[i] && v[i] < min){
            result.push_back(v[i]);
        }
        if(v[i] < min){ //更新最小值 
            min = v[i];
        }
    }
    int size = result.size();
    printf("%d\n", size);
    if(size - 1 >= 0){ //不加判断的话,如果没有符合的情况,会下标越界 
        printf("%d", result[size - 1]);
    }
    for(int i = size - 2; i >= 0; --i){
        printf(" %d", result[i]);
    }
    printf("\n");
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值