服务器虚拟环境创建

本文介绍了如何使用conda进行虚拟环境管理,包括创建、激活、退出和删除环境。详细阐述了在服务器上安装tensorflow-gpu和pytorch的步骤,以及解决相关依赖问题。同时,提供了包管理命令和服务器上运行tensorflow GPU模型的流程。当遇到权限不足的问题时,给出了相应的解决方案,并讲解了GPU设置,包括限制GPU使用率和监视GPU状态的方法。

conda 中环境管理:

  1. 查看当前已安装虚拟环境命令:$ conda info -e
  2. 创建新的虚拟环境命令:$ conda  create -n "env name" python=版本号
  3. 激活虚拟环境命令:$ source activate "env name"
  4. 退出虚拟环境命令:$ source deactivate
  5. 删除自己创建虚拟环境的命令:$ conda remove -n "env name"  --all  或 $ conda env remove -n env_name
  6. 列出环境: $ conda  env list    或   $ conda info -e
  7. 安装tensorflow-gpu时注意:
    (1).先使用命令:$ conda search tensorflow-GPU 查看可使用版本。                                           
### 使用 `venv` 创建 Python 虚拟环境 对于服务器上的Python开发工作,创建独立的虚拟环境来隔离不同项目的依赖关系是非常重要的。通过Python自带的`venv`模块能够轻松实现这一点。 在目标目录下执行如下命令即可建立名为`myenv`的新虚拟环境: ```bash python3 -m venv myenv ``` 这一步骤将生成一个新的文件夹`myenv`,其中包含了该环境中所需的全部工具和支持库[^1]。 为了使新创建虚拟环境生效,在Linux或macOS系统中需运行以下激活脚本: ```bash source myenv/bin/activate ``` 而在Windows环境下,则应使用不同的路径来进行激活操作: ```cmd .\myenv\Scripts\activate.bat ``` 一旦完成上述步骤之后,终端提示符前会出现`(myenv)`字样表示已成功切换至新建的虚拟环境中工作。 ### 使用 Poetry 简化流程并增强功能 除了官方提供的`venv`外,第三方工具Poetry同样提供了强大的包管理和环境构建能力。它不仅简化了初始化过程中的配置选项设置,还允许更灵活地处理多版本解释器共存的情况。 启动新的项目可以通过简单的指令快速搭建起基础结构,并且支持自动化的方式去匹配最适合当前系统的Python解释器版本(除非特别指定了其他版本)。当设置了`virtualenvs.create=true`这一参数后,只要调用了`poetry install`或是添加软件包的动作都会触发自动化的虚拟环境检测与创建机制[^2]。 指定特定版本的Python作为虚拟环境的基础也很简单,只需一条命令就能搞定: ```bash poetry env use python3.8 # 这里假设要选用的是Python 3.8版 ``` 以上方法适用于大多数场景下的服务器端应用部署需求,无论是Web服务还是机器学习模型训练任务都能从中受益匪浅。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值