J - Airport (二分+DLX重复覆盖问题)

J - Airport (DLXn重复覆盖问题)

思路

  • 题意
  1. 从n城市中选择k个来修建机场,使所有城市到达机场的距离最大值最小
  • 分析
  1. 既然是求“距离的最大值最小”,那么就要用二分在枚举去枚举 这个最大值最小的距离md,之后在写一个判读函数 check(),进行二分的区间选择
  2. 对于check函数,当我们枚举了一个距离md之后,问题就转化为,能否存在一中方案从n个中选择k个城市使所有的城市都被覆盖,现在怎么选择k个合适的城市的问题?
  3. 我们参考:DLX问题中的精确覆盖问题:从n行中选择一些行,使这些行组成的集合的中的每一列都只有一个1(只能被覆盖一次)
  4. 在我们这个题中:我们可以让:n个城市作为行来进行选择,在让n个城市作为列,作为 被覆盖的对象,所以可以构造出一个 n * n 的数据矩形,对于这个数据矩形的行,某一行所代表的城市(设为i),在距离md之下能够覆盖某一例的城市(设为j),那么在 数据矩形中 (i,j)位置的数字就为1,否则的哈就为0,这样就构造好了 数据矩形
  5. 但是如果用 “DLX中的精确覆盖”(不能有重复覆盖的情况),我们发现每个城市可以被多个城市被多个机场覆盖——这个意味着我们选择的k中形成的集合的每一列可以有多个1(在每一列都有1的情况下),
  6. 所以我们要用 “DLX中的重复覆盖”(运行每行有多个1,也就是 被覆盖的对象可以被覆盖多次)
  7. 重复覆盖的代码与 精确覆盖的代码 有稍微的不同,主要体现在我们选择某一个之后,进行的删除操作
    1. 对于精确覆盖:我在选择某一行之后,将这一行的存在的列全部删除(这些列已经被覆我们选所择行的1的盖过了),之后再降我们删除的所有列上存在元素的对应的行也删去(这些列已经被我们选的的行的1覆盖过了,“其它行”在这些列里面存在的1,所以“其它行”全部不可以在使用了)
    2. 对于重复覆盖:我们在选择某一行之后,将这一行删除,之后在将在这一行上存在1的列删除---------------------之后相交于 “精确覆盖问题”就没了,因为我们选择的当前行的1覆盖列之后,“其它行”的1任然可以覆盖已经被覆盖过的列的,所以“其它行”就不用被删除了,可以在后面继续被使用
  8. 重复覆盖因为删除 行 少了,所以递归的层数会变多,所以加了一个剪枝行h(),它返回一个数,这个数表示从当前覆盖情况下,最少还需要几次覆盖才使所有的列都被1覆盖

代码

#include<iostream> 
#include<algorithm>
#include<cstring>
#include<queue>
#include<map>
#include<string>
#include<cstdio>
#include<cmath>
#include<stack>
void fre() { system("clear"), freopen("A.txt", "r", stdin); freopen("Ans.txt","w",stdout); } 
void Fre() { system("clear"), freopen("A.txt", "r", stdin);}
#define ios ios::sync_with_stdio(false)
#define Pi acos(-1)
#define pb push_back
#define fi first
#define se second
#define ll long long
#define ull unsigned long long 
#define db double
#define Pir pair<int, int>
#define PIR pair<Pir, Pir>
#define m_p make_pair
#define INF 0x3f3f3f3f
#define mod (ll)(1e9 + 7)
#define for_(i, s, e) for(int i = (ll)(s); i <= (ll)(e); i ++)
#define rep_(i, e, s) for(int i = (ll)(e); i >= (ll)(s); i --)
#define sd(a) scanf("%d", &a)
#define sc(a) scanf("%c", &a)
using namespace std;

const int mxnode = 1e4;
const int mxn = 100;
pair<ll, ll> city[mxn];
ll dis[mxn][mxn];
ll val[mxnode];
int n, k;

struct DLX
{
    int U[mxnode], D[mxnode], R[mxnode], L[mxnode];
    int Col[mxnode], Row[mxnode];
    int H[mxnode], S[mxnode];
    int ans, ansd[mxn];
    int size, n; 
    int vis[mxn];

    void init(int _n)
    {
        n = _n;
        for_(i, 0, n)
        {
            L[i] = i - 1;
            R[i] = i + 1;
            U[i] = D[i] = i;
        }
        R[n] = 0, L[0] = n, size = n;
        memset(H, -1, sizeof(H));
        memset(S,  0, sizeof(S));
    }
    void link(int r, int c)
    {
        Col[++ size] = c;
        Row[size] = r;
        S[c] ++;
        U[size] = U[c];
        D[size] = c;
        D[U[c]] = size;
        U[c] = size;

        if(H[r] == -1)
            H[r] = L[size] = R[size] = size;
        else
        {
            L[size] = size - 1;
            R[size] = H[r];
            R[L[size]] = size;
            L[H[r]] = size;
        }
    }
    void remove(int c)
    {
        for(int i = D[c]; i != c; i = D[i])
            L[R[i]] = L[i], R[L[i]] = R[i];
    }
    void resume(int c)
    {
        for(int i = U[c]; i != c; i = U[i])
            L[R[i]] = i, R[L[i]] = i;
    }
    int h()            //类似与A* 算法中的 h估值函数,表示从当前状态到结束状态至少还需要递归多少层; 
    {
        memset(vis, 0, sizeof(vis));
        int sum = 0;
        for(int i = R[0]; i; i = R[i])
        {
            if(vis[i]) continue;
            vis[i] = 1;
            sum ++;
            for(int j = D[i]; j != i; j = D[j])
                for(int k = R[j]; k != j; k = R[k])
                    vis[Col[k]] = 1;
        }
        return sum;
    }
    bool dance(int d)
    {
        if(d + h() > k) return false;
        if(R[0] == 0) return d <= k;

        int c = R[0];
        for(int i = R[0]; i; i = R[i])
            if(S[c] > S[i])
                c = i;
        for(int i = D[c]; i != c; i = D[i])
        {
            remove(i);
            for(int j = R[i]; j != i; j = R[j])
                remove(j);
            if(dance(d + 1)) return true;
            for(int j = L[i]; j != i; j = L[j])
                resume(j);
            resume(i);
        }
        return false;
    }

} dlx;

ll Dis(int i, int j)
{
    return abs(city[i].fi - city[j].fi) + \
        abs(city[i].se - city[j].se);
}
bool check(ll w)
{
    dlx.init(n);
    for_(i, 1, n)
        for_(j, 1, n)
        if(dis[i][j] <= w)
            dlx.link(i, j);
    return dlx.dance(0);
}

int main()
{
    /* fre(); */
    int T, Case = 1;
    sd(T);
    while(T --)
    {
        scanf("%d %d", &n, &k);
        int cnt = 0;
        for_(i, 1, n)
        {
            scanf("%lld %lld", &city[i].fi, &city[i].se);
            for_(j, 1, i)
                dis[i][j] = dis[j][i] = val[cnt ++] = Dis(i, j);
        }
        sort(val, val + cnt);
        cnt = unique(val, val + cnt) - val;
        int l = 0, r = cnt - 1;
        while(l < r)
        {
            int md = l + r >> 1;
            if(check(val[md]))
                r = md;
            else
                l = md + 1;
        }
        printf("Case #%d: %lld\n", Case ++, val[r]);
    }

    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值