题意
- 总共用 n 个点,这个 n 个点可以被分割成两个集合中去,我们假设为 左集合 L、右集合 R,其中 L 中的元素只能与 R 中的某些元素进行匹配,问左集合 L 中的元素最大可以和 R 中的集合一对一形成的最大匹配数是多少?
思路
- 因为这题中的点可以备份为两个集合,所以是让求的二分图最大匹配,如果不能被分成两个集合,那就要用 一般图的二分图最大匹配算法(带花树算法)了,
- 二者这题我们只需要 跑一个二分图最大匹配就行了,
- 或者建图跑网络流,
- 虚拟出一个 超级源点是 S 与 L 集合中的元素相连,流量为 1
- 虚拟出一个 超级汇点 T,把 R 集合的中的元素与 T 相连,流量为 1,
- R 与 L 之间的点若存在关系,那么就链接一条流量为 1 的边
- 最后跑网络流 dinic。
代码
#include <iostream>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <algorithm>
#include <string>
#include <queue>
#include <map>
#include <bitset>
#include <vector>
using namespace std;
void fre() { system("clear"), freopen("A.txt", "r", stdin); freopen("Ans.txt","w",stdout); }
void Fre() { system("clear"), freopen("A.txt", "r", stdin);}
void Run(int x = 0) {
#ifdef ACM
if (! x) fre(); else Fre();
#endif
}
#define ios ios::sync_with_stdio(false)
#define Pi acos(-1)
#define pb push_back
#define fi first
#define se second
#define db double
#define ll long long
#define ull unsigned long long
#define Pir pair<ll, ll>
#define m_p make_pair
#define for_(i, s, e) for(ll i = (ll)(s); i <= (ll)(e); i ++)
#define rep_(i, e, s) for(ll i = (ll)(e); i >= (ll)(s); i --)
#define memset(a, b, c) memset(a, (int)b, c);
#define size() size() * 1LL
#define sc scanf
#define pr printf
#define sd(a) sc("%lld", &a)
#define ss(a) sc("%s", a)
#define __ pr( "------------------------\n" );
#define ___ pr("\n------------------------\n");
#define inf 0x3f3f3f3f
#define INF 0x3f3f3f3f3f3f3f3f
#define esp 1e-7
#define mod (ll)(1e9 + 7)
const int mxn = 2e4;
const int mxm = 1e5;
struct Edge
{
int v, w, next;
} edge[mxm];
int head[mxn], tot;
void Add(int u, int v, int w)
{
edge[++ tot] = (Edge){ v, w, head[u] }; head[u] = tot;
edge[++ tot] = (Edge){ u, 0, head[v] }; head[v] = tot;
}
void init(int n)
{
tot = 1;
memset(head, 0, sizeof head);
}
int n, m, s, t;
int lv[mxn], cur[mxn];
queue<int> q;
bool bfs()
{
memset(lv, -1, sizeof lv);
memcpy(cur, head, sizeof head);
lv[s] = 0;
q.push(s);
while (q.size())
{
int u = q.front(); q.pop();
for (int i = head[u]; i; i = edge[i].next)
{
int v = edge[i].v, w = edge[i].w;
if (w > 0 && lv[v] == -1)
{
lv[v] = lv[u] + 1;
q.push(v);
}
}
}
return lv[t] != -1;
}
int dfs(int u = s, int flow = inf)
{
if (u == t) return flow;
int rmn = flow;
for (int i = cur[u]; i && rmn; i = edge[i].next)
{
cur[u] = i;
int v = edge[i].v, w = edge[i].w;
if (w > 0 && lv[v] == lv[u] + 1)
{
int c = dfs(v, min(w, rmn));
rmn -= c;
edge[i].w -= c;
edge[i ^ 1].w += c;
}
}
if (flow - rmn == 0) lv[u] = -inf;
return flow - rmn;
}
int dinic()
{
int ans = 0, c;
while (bfs())
{
while ((c = dfs()) > 0) ans += c;
}
return ans;
}
int main()
{
Run();
int n, m;
sc("%d %d", &n, &m);
s = 0, t = n + 1;
init(t);
int u, v;
while (sc("%d %d", &u, &v) != EOF)
{
Add(u, v, 1);
}
for_(i, 1, m)
{
Add(s, i, 1);
}
for_(i, m + 1, n)
{
Add(i, t, 1);
}
pr("%d", dinic());
return 0;
}