【可证明安全】公钥方案的可证明安全(一)

Provable Security for Public-Key Schemes

Cryptography

secrecy of communications
practical secrecy

Shannon provides a definition of secrecy
Perfect Secrecy
The ciphertext does not reveal any(additional) information about the plaintext:no more than known before

  • a prior information about the plaintext,defined by the distribution probability of the plaintext,
  • a posterior information about the plaintext,defined by the distribution probability of the plaintext,given the ciphertext

Both distributions should be perfectly identical

Perfect Secrecy vs. Practical Secrecy
No information about the plaintext m is in the ciphertext c without the knowledge of the key k
⇒ information theory
No information about the plaintext m can be extracted
from the ciphertext c, even for a powerful adversary (unlimited time and/or unlimited power): perfect secrecy
In practice: adversaries are limited in time/power
⇒ complexity theory
Asymmetric Encryption: Intuition
Secrecy:

  • The recipient only should be able to open the message
  • No requirement about the sender

Asymmetric Encryption: Formalism
Public Key Cryptography – Diffie-Hellman (1976)

  • Bob’s public key is used by Alice as a parameter to encrypt a message to Bob
  • Bob’s private key is used by Bob as a parameter to decrypt ciphertexts

Secrecy of the private key sk ⇒ secrecy of communications
Because of pk,perfect secrecy is definitely impossible!

Provable Security

What is a Secure Cryptographic Scheme/Protocol?

  • Public-key encryption:Secrecy of the private key sk ⇒ secrecy of communications
  • What does mean secrecy? → Security notions have to be formally defined
  • How to guarantee above security claims for concrete schemes?→ Provable security

One can prove that:

if an adversary is able to break the cryptographic scheme
then one can break a well-known hard problem

General Method
Computational Security Proofs
In order to prove the security of a cryptographic scheme/protocol,one needs

  • a formal security model (security notions)
  • acceptable computational assumptions (hard problems)
  • a reduction: if one can break the security notions,
    then one can break the hard problem

Computational Assumptions
Integer Factoring

  • Given n = pq
  • Find p and q

Integer Factoring Variants(变体/变种/变形)
未解难题:RSA问题是否等价于IFP?目前仅已知(难度上)RSAP<=IFP。换句话说,RSA假设要强于IF假设。

RSA

  • Given n = pq, e and y ∈ Zn*
  • Find x such that y = xe mod n

Note that this problem is hard without the prime factors p and q, but becomes easy with them: if d = e−1 mod ϕ(n), then x = yd mod n

** Flexible RSA **

  • Given n = pq and y ∈ Zn*
  • Find x and e > 1 such that y = xe mod n

Both problems are assumed as hard as integer factoring:the prime factors are a trapdoor to find solutions

Discrete Logarithm Problem

  • Given G = a cyclic group of order q, and y ∈ G
  • Find x such that y = gx

Possible groups: G ∈ (Zp*, ×), or an elliptic curve

(Computational) Diffie Hellman Problem

  • Given G = a cyclic group of order q, and X = g x , Y =g y
  • Find Z = gxy

The knowledge of x or y helps to solve this problem (trapdoor)

Success Probabilities
For any computational problem P, we quantify the quality of an adversary A by its success probability in finding the so(量化问题的难度):

SuccP(A) = Pr[A(instance) → solution]

We quantify the hardness of the problem by the success probability of the best adversary within time t:

Succ(t) = max|A|≤t{Succ(A)}

Note that the probability space can be restricted:
some inputs are fixed, and others only are randomly chosen

Discrete Logarithm Problem

We usually fix the group G = of order q, X is randomly chosen:
在这里插入图片描述

(Decisional) Diffie Hellman Problem(DDHP)

  • Given G = a cyclic group of order q, and X = g x , Y = g y ,as well as a candidate Z ∈ G
  • Decide whether Z = gxy

In such a case, the adversary is called a distinguisher (outputs 1 bit) A good distinguisher should behave in significantly different manners according to the input distribution:

在这里插入图片描述Distribution Indistinguishability
Indistinguishabilities
Let D0 and D1, two distributions on a finite set X:

  • D0 and D1 are perfectly indistinguishable if
    在这里插入图片描述
  • D0 and D1 are statistically indistinguishable if
    在这里插入图片描述

Computational Indistinguishability
Let D0 and D1, two distributions on a finite set X:
a distinguisher A between D0 and D1
在这里插入图片描述the computational indistinguishability of D0 and D1 is
在这里插入图片描述
Theorem
在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值