动态规划之背包问题

本文介绍了如何使用动态规划解决背包问题,旅行者面对n种物品和背包最大重量限制b,如何选择物品以最大化背包价值。问题解析中指出问题与换钱币问题类似,涉及两种状态的累积,并提供了二维vector的状态转移代码实现。
摘要由CSDN通过智能技术生成

1、问题描述:一个旅行者随身携带一个背包,可以放入背包的物品有n种,每种物品重量和价值分别为w[i],v[i]。如果背包的最大重量限制是b,每种物品可以放多个。怎样选择放入背包的物品以使得背包的价值最大?上述都是整数。


2、问题解析:这个问题和前述换钱币的问题很相似,首先都是属于两种状态中的累积状态,也就是选取前 i 个值;其次在给边界赋值的时候需要注意一些;状态的变化有两种,由选择第 i 个 和 不选择第 i 个区分;注意二维vector的大小,种类(物品或者货币)有 n 种,可以用 0 表示第一种,也可以用 1 表示第一种(这时需注意下标为 0 是没有用的,但是也要赋值),限制条件(钱的数目或者总重量)有 b+1种,也就是从 0 变化到 b。


3、下面给出代码:

#include<iostream>
#include<vector>

using namespace std;

int max(int, int);
int main() {

	int n, b;//物品的种类和重量限制
	int i, j;//辅助变量
	cin >> n >> b
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值