使用redis有什么缺点
分析:大家用redis这么久,这个问题是必须要了解的,基本上使用redis都会碰到一些问题,常见的也就几个。
回答:主要是四个问题
(一)缓存和数据库双写一致性问题
(二)缓存雪崩问题
(三)缓存击穿问题
(四)缓存的并发竞争问题
一、缓存和数据库间数据一致性问题
分布式环境下(单机就不用说了)非常容易出现缓存和数据库间的数据一致性问题,针对这一点的话,只能说,如果你的项目对缓存的要求是强一致性的,那么请不要使用缓存。我们只能采取合适的策略来降低缓存和数据库间数据不一致的概率,而无法保证两者间的强一致性。合适的策略包括 合适的缓存更新策略,更新数据库后要及时更新缓存、缓存失败时增加重试机制,例如MQ模式的消息队列
二、缓存击穿问题
缓存击穿表示恶意用户模拟请求很多缓存中不存在的数据,由于缓存中都没有,导致这些请求短时间内直接落在了数据库上,导致数据库异常
。比如有些抢购活动、秒杀活动的接口API被大量的恶意用户刷,导致短时间内数据库超时了,好在数据库是读写分离,同时也有进行接口限流,hold住了。
方案1、使用互斥锁排队
业界比价普遍的一种做法,即根据key获取value值为空时,锁上,从数据库中load数据后再释放锁。若其它线程获取锁失败,则等待一段时间后重试。这里要注意,分布式环境中要使用分布式锁
,单机的话用普通的锁(synchronized、Lock)
就够了。
优缺点
- 这样做思路比较清晰,也从一定程度上减轻数据库压力,
- 但是锁机制使得逻辑的复杂度增加,吞吐量也降低。
方案2、接口限流与熔断、降级
重要的接口一定要做好限流策略,防止用户恶意刷接口,同时要降级准备,当接口中的某些服务不可用时候,进行熔断,失败快速返回机制。
方案3、布隆过滤器
bloomfilter就类似于一个hash set,用于快速判某个元素是否存在于集合中,其典型的应用场景就是快速判断一个key是否存在于某容器,不存在就直接返回。布隆过滤器的关键就在于hash算法和容器大小,下面先来简单的实现下看看效果,我这里用guava实现的布隆过滤器:
guava依赖:
<dependencies>
<dependency>
<groupId>com.google.guava</groupId>
<artifactId>guava</artifactId>
<version>23.0</version>
</dependency>
</dependencies>
测试例子:
import com.google.common.hash.BloomFilter;
import com.google.common.hash.Funnels;
public class BloomFilterTest {
private static final int capacity = 1000000;
private static final int key = 999998;
private static BloomFilter<Integer> bloomFilter
= BloomFilter.create(Funnels.integerFunnel(), capacity);
static {
for (int i = 0; i < capacity; i++) {
bloomFilter.put(i);
}
}
public static void main(String[] args) {
/*返回计算机最精确的时间,单位微妙。1微秒等于百万分之一秒*/
long start = System.nanoTime();
if (bloomFilter.mightContain(key)) {
System.out.println("成功过滤到" + key);
}
long end = System.nanoTime();
System.out.println("布隆过滤器消耗时间:" + (end - start));
int sum = 0;
for (int i = capacity + 20000; i < capacity + 30000; i++) {
if (bloomFilter.mightContain(i)) {
sum = sum + 1;
}
}
System.out.println("错判率为:" + sum);
}
}
执行结果:
成功过滤到999998
布隆过滤器消耗时间:155400
错判率为:309
可以看到,100w个数据中只消耗了约0.2毫秒就匹配到了key,速度足够快。然后模拟了1w个不存在于布隆过滤器中的key,匹配错误率为318/10000,也就是说,出错率大概为3%。
解决缓存穿透问题:
public String getByKey(String key) {
// 通过key获取value
String value = redisService.get(key);
if (StringUtil.isEmpty(value)) {
if (bloomFilter.mightContain(key)) {
value = userService.getById(key);
redisService.set(key, value);
return value;
} else {
return null;
}
}
return value;
}
三、缓存雪崩问题
缓存在同一时间内大量键过期(失效),接着来的一大波请求瞬间都落在了数据库中导致连接异常。
解决方案:
方案1、也是像解决缓存穿透一样加锁排队,实现同上;
方案2、建立备份缓存,缓存A和缓存B,A设置超时时间,B不设值超时时间,先从A读缓存,A没有读B,并且更新A缓存和B缓存;
方案3、设置缓存超时时间的时候加上一个随机的时间长度,比如这个缓存key的超时时间是固定的5分钟加上随机的2分钟,酱紫可从一定程度上避免雪崩问题;
public String getByKey(String keyA,String keyB) {
String value = redisService.get(keyA);
if (StringUtil.isEmpty(value)) {
value = redisService.get(keyB);
String newValue = getFromDbById();
redisService.set(keyA,newValue,31, TimeUnit.DAYS);
redisService.set(keyB,newValue);
}
return value;
}
四、缓存并发问题
这里的并发指的是多个redis的client同时set key引起的并发问题。其实redis自身就是单线程操作,多个client并发操作,按照先到先执行的原则,先到的先执行,其余的阻塞。当然,另外的解决方案是把redis.set操作放在队列中使其串行化,必须的一个一个执行,具体的代码就不上了,当然加锁也是可以的,至于为什么不用redis中的事务,留给各位看官自己思考探究。
(1)如果对这个key操作,不要求顺序
这种情况下,准备一个分布式锁,大家去抢锁,抢到锁就做set操作即可,比较简单。
(2)如果对这个key操作,要求顺序
假设有一个key1,系统A需要将key1设置为valueA,系统B需要将key1设置为valueB,系统C需要将key1设置为valueC.
期望按照key1的value值按照 valueA–>valueB–>valueC的顺序变化。这种时候我们在数据写入数据库的时候,需要保存一个时间戳。假设时间戳如下
系统A key 1 {valueA 3:00}
系统B key 1 {valueB 3:05}
系统C key 1 {valueC 3:10}
那么,假设这会系统B先抢到锁,将key1设置为{valueB 3:05}。接下来系统A抢到锁,发现自己的valueA的时间戳早于缓存中的时间戳,那就不做set操作了。以此类推。
其他方法,比如利用队列,将set方法变成串行访问也可以。总之,灵活变通。
参考
https://blog.csdn.net/fanrenxiang/article/details/80542580
https://blog.csdn.net/hjm4702192/article/details/80518856