- 博客(13)
- 收藏
- 关注
原创 论文阅读之identity mapping
论文题目:《Identity Mappings in Deep Residual Networks》论文地址:https://arxiv.org/abs/1603.05027发表时间:2016 ECCV开源代码:https://github.com/KaimingHe/ resnet-1k-layers1. Abstract分析了残差模块的传播方式,能过解释为什么使用恒等映射(identity mapping)作为跳跃连接和加和的激活项,能使得前向和反向的信号能直接在模块之间传播。并且通过一系列的
2020-06-29 16:05:32 9232 2
原创 论文阅读之HAMBox
论文题目:《HAMBox: Delving into Online High-quality Anchors Mining for Detecting Outer Faces》论文地址:https://arxiv.org/abs/1912.09231.pdf发表时间:2019.12key wordsout faces::异常人脸,由于人脸尺度过小或者人脸尺度与anchor尺度不匹配,造成训练时匹配不到足够多的Anchor(小于阈值K),影响了这些人脸的召回。Online High-quality
2020-06-15 13:34:56 389
原创 街景字符识别赛题 TASK5-模型集成
5.模型集成5.1 学习目标学习集成学习方法以及交叉验证情况下的模型集成学会使用深度学习模型的集成学习5.2 集成学习方法在机器学习中的集成学习可以在一定程度上提高预测精度,常见的集成学习方法有Stacking、Bagging和Boosting,同时这些集成学习方法与具体验证集划分联系紧密。对于多个模型集成的预测结果的选择,有多种方法:对预测的结果的概率值进行平均,然后解码为具体字符;对预测的字符进行投票,得到最终字符。5.3 深度学习中的集成学习5.3.1 dropout
2020-06-01 22:23:08 238
原创 论文阅读之CornerNet
论文题目:《Detecting Objects as Paired Keypoints》论文地址:https://arxiv.org/pdf/1808.01244.pdf发表时间:2018代码:https://github.com/umich-vl/CornerNet1.Abstract提出一种新的目标检测方法: 使用一个单一卷积神经网络,将检测对象的bbox检测为一对关键点----左上角和右上角。通过将检测目标变成一对关键点,消除了对设计anchor的需要。另外提出了一种新的池化层——corne
2020-05-31 11:25:31 396
原创 街景字符识别赛题 TASK4-模型训练与验证
4.模型训练与验证4.1 学习目标理解验证集的作用,并使用训练集和验证集完成训练学会使用pytorch环境下的模型读取和加载,并了解调参流程4.2 验证集一般情况下,将总样本分成三个部分:训练集(Train Set):用于训练和调整模型参数的数据集。验证集(Validation Set):用于验证模型精度和调整模型参数。测试集(Test Set): 验证模型的泛化能力。需要注意验证集的分布应该与测试集尽量保持一致,不然模型在验证集上的精度就失去了指导意义。验证集划分的方法:留
2020-05-29 21:08:14 326
原创 街景字符识别赛题 TASK3-字符识别模型
3.字符识别模型2.1 输入数据信息dataset加载图片时将图片尺寸固定成了(60, 120)2.2 加载预训练模型2.2.1 torchvision.models里有哪些模型?import torchvision.models as modelsAlexnetmodel = models.alexnet(pretrained=False)VGGmodel = models.vgg11(pretrained =False)model = models.vgg11_bn(pretr
2020-05-26 21:56:24 310
原创 论文阅读之CenterNet
论文题目: 《Objects as Points》地址:https://arxiv.org/pdf/1904.07850.pdf发布时间:2019.4代码:https://github.com/xingyizhou/CenterNet1. Abstractanchor_based 算法:枚举出可能潜在的目标,然后对这些潜在的目标进行分类。缺点:浪费时间、低效,需要额外的后处理(post-processing)本文算法:将目标的bbox的中心点定为该目标的中心点,检测器使用关键点检测去估计找到中
2020-05-26 14:42:42 438
原创 街景字符识别赛题 TASK2-数据读取与数据扩增
2.数据读取与数据扩增2.1 学习目标学习python和pytorch中图像读取学会扩增方法和pytorch读取赛题数据2.2 图像读取python常用的对图像读取的库Pillow(Pillow是Python里的图像处理库,PIL:Python Image Library)openCV2.2.1 pillow# 导入pillow库from PIL import Image# 类中的函数im = Image.open(''xxx.jpg) # 读取照片Image.new(
2020-05-21 21:54:56 258
原创 街景字符识别赛题 TASK1-赛题理解
1.赛题理解1.1赛题数据赛题以街道字符为为赛题数据, 该数据来自收集的SVHN街道字符,并进行了匿名采样处理。训练集数据包括3W张照片,验证集数据包括1W张照片。JSON文件里含有照片名,照片里含有的数字以及数字的位置。测试集A包括4W张照片,测试集B包括4W张照片。1.2 数据标签对于训练数据每张图片将给出对于的编码标签,和具体的字符框的位置(训练集、验证集都给出字符位置),可用于模型训练:字符的坐标具体如下所示:在比赛数据(训练集和验证集)中,同一张图片中可能包括一个或者多个字符
2020-05-19 20:08:13 223
原创 2. 数据挖掘入门之数据清洗
数据清洗作用是利用有关技术如数理统计、数据挖掘或预定义的清洗规则将脏数据转化为满足数据质量要求的数据。主要包括缺失值处理,异常值处理,数据分桶,特征归一化/标准化等流程1. 缺失值处理不处理: 针对xgboost等树模型,有些模型有处理缺失的机制,所以可以不处理。删除该列: 如果缺失的太多,可以考虑删除该列插值补全: 均值、中位数、众数、建模预测、多重插补,通过感知补全或矩阵补全等高维...
2020-04-21 09:42:25 812
原创 1. 数据挖掘入门之数据分析
1. 数据载入1.1 载入训练集和测试集data = pd.read_csv('文件路径', sep='')1.2 数据简略观测数据形状data.shape数据简略观测data.head()data.tail()# 有些数据列太长,有些列会被省略输出, 可以通过data.iloc(:,:)分批查看,或者通过 pd.set_option('display.max_co...
2020-04-20 17:20:54 258
原创 基础评估指标知识
一、分类问题1. 混淆矩阵混淆矩阵是监督学习中的一种可视化工具,主要用于比较分类结果和实例的真实信息。矩阵中的每一行代表实例的预测类别,每一列代表实例的真实类别。...
2020-04-09 09:22:05 753
原创 K近邻算法
K近邻算法1.算法原理2. 代码实例参数信息3. 其他变种1.算法原理K近邻算法,也就是KNN,监督学习的一种。即给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的K个实例(也就是上面所说的K个邻居)(投票,票数多的当选), 这K个实例的多数属于某个类,就把该输入实例分类到这个类中。K通常是不大于20的整数。KNN算法中,所选择的邻居都是已经正确分类的对象。该方法在定类决...
2020-04-08 12:51:43 343
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人