51 NOD 1094 和为k的连续区间(前缀和)

题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1094


基准时间限制:1 秒 空间限制:131072 KB 分值: 10  难度:2级算法题
 收藏
 关注
一整数数列a1, a2, ... , an(有正有负),以及另一个整数k,求一个区间[i, j],(1 <= i <= j <= n),使得a[i] + ... + a[j] = k。
Input
第1行:2个数N,K。N为数列的长度。K为需要求的和。(2 <= N <= 10000,-10^9 <= K <= 10^9)
第2 - N + 1行:A[i](-10^9 <= A[i] <= 10^9)。
Output
如果没有这样的序列输出No Solution。
输出2个数i, j,分别是区间的起始和结束位置。如果存在多个,输出i最小的。如果i相等,输出j最小的。
Input示例
6 10
1
2
3
4
5
6
Output示例
1 4


解析: 前缀和,O(n^2)就能过


代码:


#include<bits/stdc++.h>
#define N 10009
using namespace std;
typedef long long LL;

int a[N];

int main()
{
    int k, n, num, i, j, f = 0;
    a[0] = 0;
    scanf("%d%d", &n, &k);
    for(i = 1; i <= n; i++)
    {
        scanf("%d", &num);
        a[i] = a[i - 1] + num;
    }
    for(i = 0; i < n; i++)
    {
        for(j = i + 1; j <= n; j++)
        {
            if(a[j] - a[i] == k)
            {
                printf("%d %d\n", i + 1, j);
                f = 1;
                break;
            }
        }
        if(f) break;
    }
    if(!f) puts("No Solution");
    return 0;
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值