题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1094
基准时间限制:1 秒 空间限制:131072 KB 分值: 10
难度:2级算法题
一整数数列a1, a2, ... , an(有正有负),以及另一个整数k,求一个区间[i, j],(1 <= i <= j <= n),使得a[i] + ... + a[j] = k。
Input
第1行:2个数N,K。N为数列的长度。K为需要求的和。(2 <= N <= 10000,-10^9 <= K <= 10^9) 第2 - N + 1行:A[i](-10^9 <= A[i] <= 10^9)。
Output
如果没有这样的序列输出No Solution。 输出2个数i, j,分别是区间的起始和结束位置。如果存在多个,输出i最小的。如果i相等,输出j最小的。
Input示例
6 10 1 2 3 4 5 6
Output示例
1 4
解析: 前缀和,O(n^2)就能过
代码:
#include<bits/stdc++.h>
#define N 10009
using namespace std;
typedef long long LL;
int a[N];
int main()
{
int k, n, num, i, j, f = 0;
a[0] = 0;
scanf("%d%d", &n, &k);
for(i = 1; i <= n; i++)
{
scanf("%d", &num);
a[i] = a[i - 1] + num;
}
for(i = 0; i < n; i++)
{
for(j = i + 1; j <= n; j++)
{
if(a[j] - a[i] == k)
{
printf("%d %d\n", i + 1, j);
f = 1;
break;
}
}
if(f) break;
}
if(!f) puts("No Solution");
return 0;
}