题目链接:http://lightoj.com/volume_showproblem.php?problem=1038
Time Limit: 2 second(s) | Memory Limit: 32 MB |
Rimi learned a new thing about integers, which is - any positive integer greater than 1 can be divided by its divisors. So, he is now playing with this property. He selects a number N. And he calls this D.
In each turn he randomly chooses a divisor of D (1 to D). Then he divides D by the number to obtain new D. He repeats this procedure until D becomes 1. What is the expected number of moves required for N to become 1.
Input
Input starts with an integer T (≤ 10000), denoting the number of test cases.
Each case begins with an integer N (1 ≤ N ≤ 105).
Output
For each case of input you have to print the case number and the expected value. Errors less than 10-6 will be ignored.
Sample Input | Output for Sample Input |
3 1 2 50 | Case 1: 0 Case 2: 2.00 Case 3: 3.0333333333 |
题意:求n变成1的期望(n除以它的因子)
解析:dp[i]表示i的期望,dp[i] = (dp[i/xi] + dp[i/x2] + dp[i/x3] + ...... + dp[i] + 1 * num ) / num (x1, x2,x3,......i)都是i的因子,一共num个因子, + 1 表示还有一步从xi到i,一个加了num个, 因子包括1和它自己,上面的式子是原始的式子,可以进一步推导变成dp[i] = (dp[i/x1] + dp[i/x2] + dp[i/x3] + ...+ num) / (num-1)
代码:
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<vector>
#include<queue>
#include<map>
#include<cmath>
#define N 100009
using namespace std;
const int INF = 0x3f3f3f3f;
double dp[N];
void init()
{
dp[1] = 0; dp[2] = 2.00;
for(int i = 3; i <= 100000; i++)
{
int k = sqrt(i), cnt = 0;
double sum = 0;
for(int j = 1; j <= k; j++)
{
if(i % j == 0)
{
cnt++; sum += dp[j];
if(i / j != j) cnt++, sum+= dp[i/j];
}
}
dp[i] = (sum + cnt) / (cnt - 1);
}
}
int main()
{
init();
int t, cnt = 0, n;
scanf("%d", &t);
while(t--)
{
scanf("%d", &n);
printf("Case %d: %f\n", ++cnt, dp[n]);
}
}