light oj 1038 - Race to 1 Again(概率DP)

题目链接:http://lightoj.com/volume_showproblem.php?problem=1038


1038 - Race to 1 Again
Time Limit: 2 second(s)Memory Limit: 32 MB

Rimi learned a new thing about integers, which is - any positive integer greater than 1 can be divided by its divisors. So, he is now playing with this property. He selects a number N. And he calls this D.

In each turn he randomly chooses a divisor of D (1 to D). Then he divides D by the number to obtain new D. He repeats this procedure until D becomes 1. What is the expected number of moves required for N to become 1.

Input

Input starts with an integer T (≤ 10000), denoting the number of test cases.

Each case begins with an integer N (1 ≤ N ≤ 105).

Output

For each case of input you have to print the case number and the expected value. Errors less than 10-6 will be ignored.

Sample Input

Output for Sample Input

3

1

2

50

Case 1: 0

Case 2: 2.00

Case 3: 3.0333333333

 


PROBLEM SETTER: JANE ALAM JAN


题意:求n变成1的期望(n除以它的因子)

解析:dp[i]表示i的期望,dp[i] = (dp[i/xi] + dp[i/x2] + dp[i/x3] + ...... + dp[i] + 1 * num ) / num   (x1, x2,x3,......i)都是i的因子,一共num个因子, + 1 表示还有一步从xi到i,一个加了num个, 因子包括1和它自己,上面的式子是原始的式子,可以进一步推导变成dp[i] = (dp[i/x1] + dp[i/x2] + dp[i/x3] + ...+ num) / (num-1)

代码:

#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<vector>
#include<queue>
#include<map>
#include<cmath>
#define N 100009
using namespace std;
const int INF = 0x3f3f3f3f;

double dp[N];

void init()
{
    dp[1] = 0; dp[2] = 2.00;
    for(int i = 3; i <= 100000; i++)
    {
        int k = sqrt(i), cnt = 0;
        double sum = 0;
        for(int j = 1; j <= k; j++)
        {
            if(i % j == 0)
            {
                cnt++; sum += dp[j];
                if(i / j != j) cnt++, sum+= dp[i/j];
            }
        }
        dp[i] = (sum + cnt) / (cnt - 1);
    }
}

int main()
{
    init();
    int t, cnt = 0, n;
    scanf("%d", &t);
    while(t--)
    {
        scanf("%d", &n);
        printf("Case %d: %f\n", ++cnt, dp[n]);
    }
}



杭州电子科技大学在线评测系统(杭电OJ)中的题目1000-1100是一系列编程题,我将分别进行回答。 1000题是一个简单的入门题,要求计算两个整数的和。我们可以使用一个简单的算法,读取输入的两个整数,然后将它们相加,最后输出结果即可。 1001题是一个稍微复杂一些的题目,要求实现字符串的逆序输出。我们可以使用一个循环来逐个读取输入的字符,然后将这些字符存储在一个数组中。最后,我们可以倒序遍历数组并将字符依次输出,实现字符串的逆序输出。 1002题是一个求最大公约数的问题。我们可以使用辗转相除法来解决,即先求出两个数的余数,然后将被除数更新为除数,将除数更新为余数,直至两个数的余数为0。最后的被除数就是最大公约数。 1003题是一个比较简单的排序问题。我们可以使用冒泡排序算法来解决,即每次比较相邻的两个元素,如果它们的顺序错误就交换它们的位置。重复这个过程直至整个数组有序。 1100题是一个动态规划问题,要求计算给定序列中的最长上升子序列的长度。我们可以使用一个数组dp来保存到达每个位置的最长上升子序列的长度。每当遍历到一个位置时,我们可以将其和之前的位置比较,如果比之前位置的值大,则将其更新为之前位置的值加1,最后返回dp数组的最大值即可。 以上是对杭电OJ1000-1100题目的简要回答,涉及了一些基本的编程知识和算法思想。希望对您有所帮助。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值