1 ,目的 : 求 θ
- 不要忘了 : 一切的目的,都是求 θ
- 似然函数 : 只要 θ 能使似然函数最大,这个 θ ,就是最优解,距离现实最近的解
2 ,似然函数最大值 :
- 似然函数 :
- 思考 :
1 ,乘法不好算,想使用对数来算
2 ,可行性 : 反正求最大值,只要对数取到了最大值,似然函数整体就也是最大值
3 ,为什么用 log : 因为求导以后,就变成了加法,容易计算 - 对数求解 :
3 ,累乘 =》 累加 : 使用对数,对函数进行变换
- 转化 :
- 目的 : 让这个函数去到最大值
- 剔除无关项 : 得到目标函数 J(θ)
- 思路 :
让这个函数最小,似然函数就可以越大 - 新的目标 : 求 J 函数的最小值
4 ,带入数值 : 参数含义
- 代数 :将 x 矩阵与 y 向量,带入到函数中
- 参数含义 :
1 ,X : 已知量,自变量,组成的矩阵 ( x0,x1,x2 )
2 ,y : 已知量,因变量,组成的向量 ( y )
3 ,θ : 未知量,目的就是求出它
5 ,求 θ 向量 : 出来结果啦
- J 函数 :
- 对 θ 求导 :
- 导数 = 0 时,取到极值 :此时
6 ,真实情况 :
- 求不出 :通常 θ 是不能直接求出来的
- 现实中求 θ : 是一点点推导出来的