递归与动态规划---数组中的最长连续序列

【题目】

  给定无序数组,返回其中最长的连续序列的长度。

【举例】

  arr = [100, 4, 200, 1, 3, 2],最长的连续序列为[1, 2, 3, 4],所以返回4。

【基本思路】

  利用哈希表可以实现时间、空间复杂度都为O(N)的方法。具体过程如下:

  1. 生成哈希表map,key表示遍历过的某个数,value代表key这个数所在的最长连续序列的长度。

  2. 从左到右依次遍历数组,假设遍历到arr[i],如果arr[i]已经存在于map中,直接跳过,这是因为最长的连续序列必定不包含相同的值。如果arr[i]不存在与map中,则将arr[i]作为key添加到map中,其value值设为1,表示目前arr[i]单独作为一个连续序列。

    之后,在map表中查找是否含有arr[i]-1,如果有,说明arr[i]-1和arr[i]可以合并,合并之后记录新序列的长度len、最大值lmax和最小值lmin,将map表中key为lmax,lmin的value值更新为len;

    同理在map表中查找是否含有arr[i]+1,如果有,说明arr[i]和arr[i] + 1可以合并,合并之后记录新序列的长度len、最大值rmax和最小值rmin,将map表中key为rmax,rmin的value值更新为len。

  3. 遍历过程中用全局变量max记录每次合并出的序列的长度的最大值,最后返回max。

下面是使用python3.5实现的代码

#数组中的最长连续序列
def longestConsecutive(arr):
    def merge(map, less, more):
        left = less - map[less] +1
        right = more + map[more] -1
        length = right - left + 1
        map[left] = length
        map[right] = length
        return length


    if arr == None or len(arr) == 0:
        return 0
    map = {}
    maxstr = 1 
    for i in range(len(arr)):
        if arr[i] not in map:
            map[arr[i]] = 1
            if arr[i]-1 in map:
                maxstr = max(maxstr, merge(map, arr[i]-1, arr[i]))
            if arr[i]+1 in map:
                maxstr = max(maxstr, merge(map, arr[i], arr[i]+1))
    return maxstr
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值