位运算---在其他数都出现偶数次的数组中找到出现奇数次的数

【题目】

  给定一个数组arr,其中只有一个数出现了奇数次,其他数都出现了偶数次,打印这个数。

【进阶问题】

  有两个数出现了奇数次,其他数出现了偶数次,打印这两个数。

【要求】

  时间复杂度O(N),空间复杂度(1)。
  
【基本思路】

  首先需要知道,整数n与0异或的结果是n,整数n与整数n异或的结果是0;同时,异或满足交换律和结合律
  知道上述的内容,解决这道题就很容易了。如果n出现了偶数次,那么,所有的n异或完后一定为0;如果n出现了奇数次,那么所有的n异或完后一定为n。即使数组中同一个数不是连着出现的,根据异或的交换律和结合律,我们知道,数组中顺序的改变不会影响结果。所以,这道题的步骤就是:先申请一个整型变量记为e,初始化为0,让e去和数组中每一个元素进行异或,最终的e就是答案。

下面是使用c++实现的代码:

int printOddTimesNum1(vector<int> arr)
{
    int e = 0;
    for(int i=0; i<arr.size(); i++)
    {
        e = e ^ arr[i];
    }
    return e;
}

  进阶问题。原理同上,首先申请变量e,初始化为0,去异或数组中每一个元素,e最终的结果就是两个出现奇数次的数的异或,记为a ^ b。此时我们要做的就是,先单独求出一个a或b,然后就可以根据e ^ a(或者e ^ b)求出另一个结果。怎么做呢?因为e = a ^ b,所以 e 的二进制表达中为 1 的位置就是 a 与 b 二进制表达中不同的位置,我们找到这样的一个位置。我们再次遍历数组的时候只遍历元素中该位置为0(或者1)的元素,就一定只包含a或b的一个。这个遍历过程就和原始问题一样了,只不过加了一个条件。具体参照如下代码:

void printOddTimesNum2(vector<int> arr)
{
    int e1 = 0;
    int e2 = 0;
    for(int i=0; i<arr.size(); i++)
    {
        e1 ^= arr[i];
    }
    int rightOne = e1 & (~e1 + 1);
    for(int i=0; i<arr.size(); i++)
    {
        if((arr[i] & rightOne) != 0)
        {
            e2 ^= arr[i];
        }
    }
    cout<<e2<<" "<<(e2^e1)<<endl;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值