动手学深度学习three

梯度下降

梯度下降

一维梯度下降多维梯度下降牛顿法随机梯度下降
x ← x − η f ′ ( x ) x \leftarrow x-\eta f^{\prime}(x) xxηf(x) x ← x − η ∇ f ( x ) \mathbf{x} \leftarrow \mathbf{x}-\eta \nabla f(\mathbf{x}) xxηf(x) ∇ f ( x ) + H f ϵ = 0  and hence  ϵ = − H f − 1 ∇ f ( x ) \nabla f(\mathbf{x})+\boldsymbol{H}_{f} \boldsymbol{\epsilon}=0 \text { and hence } \epsilon=-\boldsymbol{H}_{f}^{-1} \nabla f(\mathbf{x}) f(x)+Hfϵ=0 and hence ϵ=Hf1f(x) x ← x − η ∇ f i ( x ) \mathbf{x} \leftarrow \mathbf{x}-\eta \nabla f_{i}(\mathbf{x}) xxηfi(x)且有: E i ∇ f i ( x ) = 1 n ∑ i = 1 n ∇ f i ( x ) = ∇ f ( x ) \mathbb{E}_{i} \nabla f_{i}(\mathbf{x})=\frac{1}{n} \sum_{i=1}^{n} \nabla f_{i}(\mathbf{x})=\nabla f(\mathbf{x}) Eifi(x)=n1i=1nfi(x)=f(x)
批量梯度下降随机梯度下降小批量随机梯度下降
O(n)O(1)O(batch)
batch_size=nbatch_size=1batch_size=batch

动态学习率

η ( t ) = η i  if  t i ≤ t ≤ t i + 1  piecewise constant  η ( t ) = η 0 ⋅ e − λ t  exponential  η ( t ) = η 0 ⋅ ( β t + 1 ) − α  polynomial  \begin{array}{ll}{\eta(t)=\eta_{i} \text { if } t_{i} \leq t \leq t_{i+1}} & {\text { piecewise constant }} \\ {\eta(t)=\eta_{0} \cdot e^{-\lambda t}} & {\text { exponential }} \\ {\eta(t)=\eta_{0} \cdot(\beta t+1)^{-\alpha}} & {\text { polynomial }}\end{array} η(t)=ηi if titti+1η(t)=η0eλtη(t)=η0(βt+1)α piecewise constant  exponential  polynomial 

每个样本j产生的loss为:
J j ( θ 0 , θ 1 , … , θ n ) = 1 2 ( h θ ( x 0 ( j ) , x 1 ( j ) , … , x n ( j ) ) − y j ) 2 所 有 样 本 的 l o s s 为 : J ( θ 0 , θ 1 , … , θ n ) = 1 2 m ∑ i = 0 m ( h θ ( x 0 ( i ) , x 1 ( i ) , … , x n ( i ) ) − y i ) 2 Jj(θ_0,θ_1,…,θ_n)=\frac{1}{2}(hθ(x0^{(j)},x_1^{(j)},…,x_n^{(j)})-y_j)^2所有样本的loss为:J(θ_0,θ_1,…,θ_n)=\frac{1}{2m}\sum{i=0}^{m}(h_θ(x_0^{(i)},x_1^{(i)},…,x_n^{(i)})-y_i)^2 Jj(θ0,θ1,,θn)=21(hθ(x0(j),x1(j),,xn(j))yj)2lossJ(θ0,θ1,,θn)=2m1i=0m(hθ(x0(i),x1(i),,xn(i))yi)2

因为是随机均匀的对样本进行采样,因此随机梯度是对梯度的无偏估计。
J j ( θ 0 , θ 1 , … , θ n ) = 1 2 ( h θ ( x 0 ( j ) , x 1 ( j ) , … , x n ( j ) ) − y j ) 2 Jj(θ_0,θ_1,…,θ_n)=\frac{1}{2}(hθ(x0^{(j)},x_1^{(j)},…,x_n^{(j)})-y_j)^2 Jj(θ0,θ1,,θn)=21(hθ(x0(j),x1(j),,xn(j))yj)2

优化算法进阶

An ill-conditioned Problem

Condition Number of Hessian Matrix:

c o n d H = λ m a x λ m i n cond_{H} = \frac{\lambda_{max}}{\lambda_{min}} condH=λminλmax

where λ m a x , λ m i n \lambda_{max}, \lambda_{min} λmax,λmin is the maximum amd minimum eignvalue of Hessian matrix.

让我们考虑一个输入和输出分别为二维向量 x = [ x 1 , x 2 ] ⊤ \boldsymbol{x} = [x_1, x_2]^\top x=[x1,x2]和标量的目标函数:

f ( x ) = 0.1 x 1 2 + 2 x 2 2 f(\boldsymbol{x})=0.1x_1^2+2x_2^2 f(x)=0.1x12+2x22

c o n d H = 4 0.2 = 20 → ill-conditioned cond_{H} = \frac{4}{0.2} = 20 \quad \rightarrow \quad \text{ill-conditioned} condH=0.24=20ill-conditioned

Maximum Learning Rate

  • For f ( x ) f(x) f(x), according to convex optimizaiton conclusions, we need step size η < 1 L \eta < \frac{1}{L} η<L1 ,where . L = m a x x ∇ 2 f ( x ) L = max_{x}\nabla^2 f(\mathbf{x}) L=maxx2f(x)
  • To guarantee the convergence, we need to have η < 2 L \eta < \frac{2}{L} η<L2 .

Supp: Preconditioning

在二阶优化中,我们使用Hessian matrix的逆矩阵(或者pseudo inverse)来左乘梯度向量 i . e . Δ x = H − 1 g i.e. \Delta_{x} = H^{-1}\mathbf{g} i.e.Δx=H1g,这样的做法称为precondition,相当于将 H H H 映射为一个单位矩阵,拥有分布均匀的Spectrum,也即我们去优化的等价标函数的Hessian matrix为良好的identity matrix。

Solution to ill-condition

  • Preconditioning gradient vector: applied in Adam, RMSProp, AdaGrad, Adelta, KFC, Natural gradient and other secord-order optimization algorithms.
  • Averaging history gradient: like momentum, which allows larger learning rates to accelerate convergence; applied in Adam, RMSProp, SGD momentum.

m t ← β m t − 1 + ( 1 − β ) ( η t 1 − β g t ) . \boldsymbol{m}_t \leftarrow \beta \boldsymbol{m}_{t-1} + (1 - \beta) \left(\frac{\eta_t}{1 - \beta} \boldsymbol{g}_t\right). mtβmt1+(1β)(1βηtgt).
相比于小批量随机梯度下降,动量法在每个时间步的自变量更新量近似于将前者对应的最近 1 / ( 1 − β ) 1/(1-\beta) 1/(1β) 个时间步的更新量做了指数加权移动平均后再除以 1 − β 1-\beta 1β

d2l.train_pytorch_ch7(torch.optim.SGD, {'lr': 0.004, 'momentum': 0.9}, features, labels)
Momentum AlgorithmAdaGradRMSPropAdaDeltaAdam
m t ← β m t − 1 + η t g t , x t ← x t − 1 − m t , \begin{aligned}\boldsymbol{m}_t &\leftarrow \beta \boldsymbol{m}_{t-1} + \eta_t \boldsymbol{g}_t, \\\boldsymbol{x}_t &\leftarrow \boldsymbol{x}_{t-1} - \boldsymbol{m}_t,\end{aligned} mtxtβmt1+ηtgt,xt1mt,Another version: m t ← β m t − 1 + ( 1 − β ) g t , x t ← x t − 1 − α t m t , \begin{aligned}\boldsymbol{m}_t &\leftarrow \beta \boldsymbol{m}_{t-1} + (1-\beta) \boldsymbol{g}_t, \\\boldsymbol{x}_t &\leftarrow \boldsymbol{x}_{t-1} - \alpha_t \boldsymbol{m}_t,\end{aligned} mtxtβmt1+(1β)gt,xt1αtmt, α t = η t 1 − β \alpha_t = \frac{\eta_t}{1-\beta} αt=1βηt其中,动量超参数 β \beta β满足 0 ≤ β < 1 0 \leq \beta < 1 0β<1。当 β = 0 \beta=0 β=0 时,动量法等价于小批量随机梯度下降。 s t ← s t − 1 + g t ⊙ g t , \boldsymbol{s}_t \leftarrow \boldsymbol{s}_{t-1} + \boldsymbol{g}_t \odot \boldsymbol{g}_t, stst1+gtgt,其中 ⊙ \odot 是按元素相乘 x t ← x t − 1 − η s t + ϵ ⊙ g t , \boldsymbol{x}_t \leftarrow\boldsymbol{x}_{t-1} - \frac{\eta}{\sqrt{\boldsymbol{s}_t + \epsilon}} \odot \boldsymbol{g}_t, xtxt1st+ϵ ηgt, v t ← β v t − 1 + ( 1 − β ) g t ⊙ g t . \boldsymbol{v}_t \leftarrow \beta \boldsymbol{v}_{t-1} + (1 - \beta) \boldsymbol{g}_t \odot \boldsymbol{g}_t. vtβvt1+(1β)gtgt.和AdaGrad算法一样,RMSProp算法将目标函数自变量中每个元素的学习率通过按元素运算重新调整,然后更新自变量 x t ← x t − 1 − α v t + ϵ ⊙ g t , \boldsymbol{x}_t \leftarrow \boldsymbol{x}_{t-1} - \frac{\alpha}{\sqrt{\boldsymbol{v}_t +\epsilon}} \odot \boldsymbol{g}_t, xtxt1vt+ϵ αgt, s t ← ρ s t − 1 + ( 1 − ρ ) g t ⊙ g t . \boldsymbol{s}_t \leftarrow \rho \boldsymbol{s}_{t-1} + (1 - \rho) \boldsymbol{g}_t \odot \boldsymbol{g}_t. stρst1+(1ρ)gtgt. g t ′ ← Δ x t − 1 + ϵ s t + ϵ ⊙ g t , \boldsymbol{g}_t' \leftarrow \sqrt{\frac{\Delta\boldsymbol{x}_{t-1} + \epsilon}{\boldsymbol{s}_t + \epsilon}} \odot \boldsymbol{g}_t, gtst+ϵΔxt1+ϵ gt, x t ← x t − 1 − g t ′ . \boldsymbol{x}_t \leftarrow \boldsymbol{x}_{t-1} - \boldsymbol{g}'_t. xtxt1gt. Δ x t \Delta\boldsymbol{x}_t Δxt来记录自变量变化量 g t ′ \boldsymbol{g}'_t gt按元素平方的指数加权移动平均: Δ x t ← ρ Δ x t − 1 + ( 1 − ρ ) g t ′ ⊙ g t ′ . \Delta\boldsymbol{x}_t \leftarrow \rho \Delta\boldsymbol{x}_{t-1} + (1 - \rho) \boldsymbol{g}'_t \odot \boldsymbol{g}'_t. ΔxtρΔxt1+(1ρ)gtgt.如不考虑 ϵ \epsilon ϵ的影响,AdaDelta算法与RMSProp算法的不同之处在于使用 Δ x t − 1 \sqrt{\Delta\boldsymbol{x}_{t-1}} Δxt1 来替代超参数 η \eta η使用了动量变量 m t \boldsymbol{m}_t mt和小批量随机梯度按元素平方的指数加权移动平均变量 v t \boldsymbol{v}_t vt m t ← β 1 m t − 1 + ( 1 − β 1 ) g t . \boldsymbol{m}_t \leftarrow \beta_1 \boldsymbol{m}_{t-1} + (1 - \beta_1) \boldsymbol{g}_t. mtβ1mt1+(1β1)gt. v t ← β 2 v t − 1 + ( 1 − β 2 ) g t ⊙ g t . \boldsymbol{v}_t \leftarrow \beta_2 \boldsymbol{v}_{t-1} + (1 - \beta_2) \boldsymbol{g}_t \odot \boldsymbol{g}_t. vtβ2vt1+(1β2)gtgt. m ^ t ← m t 1 − β 1 t , \hat{\boldsymbol{m}}_t \leftarrow \frac{\boldsymbol{m}_t}{1 - \beta_1^t}, m^t1β1tmt, v ^ t ← v t 1 − β 2 t . \hat{\boldsymbol{v}}_t \leftarrow \frac{\boldsymbol{v}_t}{1 - \beta_2^t}. v^t1β2tvt. g t ′ ← η m ^ t v ^ t + ϵ , \boldsymbol{g}_t' \leftarrow \frac{\eta \hat{\boldsymbol{m}}_t}{\sqrt{\hat{\boldsymbol{v}}_t} + \epsilon}, gtv^t +ϵηm^t, x t ← x t − 1 − g t ′ . \boldsymbol{x}_t \leftarrow \boldsymbol{x}_{t-1} - \boldsymbol{g}_t'. xtxt1gt.
torch.optim.Adagradtorch.optim.RMSproptorch.optim.Adadeltatorch.optim.Adam,

词嵌入基础

我们在“循环神经网络的从零开始实现”一节中使用 one-hot 向量表示单词,虽然它们构造起来很容易,但通常并不是一个好选择。一个主要的原因是,one-hot 词向量无法准确表达不同词之间的相似度,如我们常常使用的余弦相似度。

Word2Vec 词嵌入工具的提出正是为了解决上面这个问题,它将每个词表示成一个定长的向量,并通过在语料库上的预训练使得这些向量能较好地表达不同词之间的相似和类比关系,以引入一定的语义信息。基于两种概率模型的假设,我们可以定义两种 Word2Vec 模型:

  1. Skip-Gram 跳字模型:假设背景词由中心词生成,即建模 P ( w o ∣ w c ) P(w_o\mid w_c) P(wowc),其中 w c w_c wc 为中心词, w o w_o wo 为任一背景词;

Image Name

  1. CBOW (continuous bag-of-words) 连续词袋模型:假设中心词由背景词生成,即建模 P ( w c ∣ W o ) P(w_c\mid \mathcal{W}_o) P(wcWo),其中 W o \mathcal{W}_o Wo 为背景词的集合。

Image Name

在这里我们主要介绍 Skip-Gram 模型的实现,CBOW 实现与其类似,读者可之后自己尝试实现。后续的内容将大致从以下四个部分展开:

  1. PTB 数据集
  2. Skip-Gram 跳字模型
  3. 负采样近似
  4. 训练模型

二次采样

文本数据中一般会出现一些高频词,如英文中的“the”“a”和“in”。通常来说,在一个背景窗口中,一个词(如“chip”)和较低频词(如“microprocessor”)同时出现比和较高频词(如“the”)同时出现对训练词嵌入模型更有益。因此,训练词嵌入模型时可以对词进行二次采样。 具体来说,数据集中每个被索引词 w i w_i wi 将有一定概率被丢弃,该丢弃概率为

P ( w i ) = max ⁡ ( 1 − t f ( w i ) , 0 ) P(w_i)=\max(1-\sqrt{\frac{t}{f(w_i)}},0) P(wi)=max(1f(wi)t ,0)

其中 f ( w i ) f(w_i) f(wi) 是数据集中词 w i w_i wi 的个数与总词数之比,常数 t t t 是一个超参数(实验中设为 1 0 − 4 10^{−4} 104)。可见,只有当 f ( w i ) > t f(w_i)>t f(wi)>t 时,我们才有可能在二次采样中丢弃词 w i w_i wi,并且越高频的词被丢弃的概率越大。具体的代码如下:

Skip-Gram 跳字模型

在跳字模型中,每个词被表示成两个 d d d 维向量,用来计算条件概率。假设这个词在词典中索引为 i i i ,当它为中心词时向量表示为 v i ∈ R d \boldsymbol{v}_i\in\mathbb{R}^d viRd,而为背景词时向量表示为 u i ∈ R d \boldsymbol{u}_i\in\mathbb{R}^d uiRd 。设中心词 w c w_c wc 在词典中索引为 c c c,背景词 w o w_o wo 在词典中索引为 o o o,我们假设给定中心词生成背景词的条件概率满足下式:

P ( w o ∣ w c ) = exp ⁡ ( u o ⊤ v c ) ∑ i ∈ V exp ⁡ ( u i ⊤ v c ) P(w_o\mid w_c)=\frac{\exp(\boldsymbol{u}_o^\top \boldsymbol{v}_c)}{\sum_{i\in\mathcal{V}}\exp(\boldsymbol{u}_i^\top \boldsymbol{v}_c)} P(wowc)=iVexp(uivc)exp(uovc)

负采样近似

由于 s o f t m a x softmax softmax运算考虑了背景词可能是词典 V \mathcal{V} V 中的任一词,对于含几十万或上百万词的较大词典,就可能导致计算的开销过大。我们将以 skip-gram 模型为例,介绍负采样 (negative sampling) 的实现来尝试解决这个问题。

负采样方法用以下公式来近似条件概率 P ( w o ∣ w c ) = exp ⁡ ( u o ⊤ v c ) ∑ i ∈ V exp ⁡ ( u i ⊤ v c ) P(w_o\mid w_c)=\frac{\exp(\boldsymbol{u}_o^\top \boldsymbol{v}_c)}{\sum_{i\in\mathcal{V}}\exp(\boldsymbol{u}_i^\top \boldsymbol{v}_c)} P(wowc)=iVexp(uivc)exp(uovc)

P ( w o ∣ w c ) = P ( D = 1 ∣ w c , w o ) ∏ k = 1 , w k ∼ P ( w ) K P ( D = 0 ∣ w c , w k ) P(w_o\mid w_c)=P(D=1\mid w_c,w_o)\prod_{k=1,w_k\sim P(w)}^K P(D=0\mid w_c,w_k) P(wowc)=P(D=1wc,wo)k=1,wkP(w)KP(D=0wc,wk)

其中 P ( D = 1 ∣ w c , w o ) = σ ( u o ⊤ v c ) P(D=1\mid w_c,w_o)=\sigma(\boldsymbol{u}_o^\top\boldsymbol{v}_c) P(D=1wc,wo)=σ(uovc) σ ( ⋅ ) \sigma(\cdot) σ() 为 sigmoid 函数。对于一对中心词和背景词,我们从词典中随机采样 K K K 个噪声词(实验中设 K = 5 K=5 K=5)。根据 Word2Vec 论文的建议,噪声词采样概率 P ( w ) P(w) P(w) 设为 w w w 词频与总词频之比的 0.75 0.75 0.75 次方。## 训练模型

损失函数

应用负采样方法后,我们可利用最大似然估计的对数等价形式将损失函数定义为如下

∑ t = 1 T ∑ − m ≤ j ≤ m , j ≠ 0 [ − log ⁡ P ( D = 1 ∣ w ( t ) , w ( t + j ) ) − ∑ k = 1 , w k ∼ P ( w ) K log ⁡ P ( D = 0 ∣ w ( t ) , w k ) ] \sum_{t=1}^T\sum_{-m\le j\le m,j\ne 0} [-\log P(D=1\mid w^{(t)},w^{(t+j)})-\sum_{k=1,w_k\sim P(w)^K}\log P(D=0\mid w^{(t)},w_k)] t=1Tmjm,j=0[logP(D=1w(t),w(t+j))k=1,wkP(w)KlogP(D=0w(t),wk)]

词嵌入进阶

“Word2Vec的实现”一节中,我们在小规模数据集上训练了一个 Word2Vec 词嵌入模型,并通过词向量的余弦相似度搜索近义词。虽然 Word2Vec 已经能够成功地将离散的单词转换为连续的词向量,并能一定程度上地保存词与词之间的近似关系,但 Word2Vec 模型仍不是完美的,它还可以被进一步地改进:

  1. 子词嵌入(subword embedding):FastText 以固定大小的 n-gram 形式将单词更细致地表示为了子词的集合,而 BPE (byte pair encoding) 算法则能根据语料库的统计信息,自动且动态地生成高频子词的集合;
  2. GloVe 全局向量的词嵌入: 通过等价转换 Word2Vec 模型的条件概率公式,我们可以得到一个全局的损失函数表达,并在此基础上进一步优化模型。

实际中,我们常常在大规模的语料上训练这些词嵌入模型,并将预训练得到的词向量应用到下游的自然语言处理任务中。本节就将以 GloVe 模型为例,演示如何用预训练好的词向量来求近义词和类比词。

GloVe 全局向量的词嵌入

GloVe 模型

Word2Vec 的损失函数(以 Skip-Gram 模型为例,不考虑负采样近似):

− ∑ t = 1 T ∑ − m ≤ j ≤ m , j ≠ 0 log ⁡ P ( w ( t + j ) ∣ w ( t ) ) -\sum_{t=1}^T\sum_{-m\le j\le m,j\ne 0} \log P(w^{(t+j)}\mid w^{(t)}) t=1Tmjm,j=0logP(w(t+j)w(t))

其中

P ( w j ∣ w i ) = exp ⁡ ( u j ⊤ v i ) ∑ k ∈ V exp ⁡ ( u k ⊤ v i ) P(w_j\mid w_i) = \frac{\exp(\boldsymbol{u}_j^\top\boldsymbol{v}_i)}{\sum_{k\in\mathcal{V}}\exp(\boldsymbol{u}_k^\top\boldsymbol{v}_i)} P(wjwi)=kVexp(ukvi)exp(ujvi)

w i w_i wi 为中心词, w j w_j wj 为背景词时 Skip-Gram 模型所假设的条件概率计算公式,我们将其简写为 q i j q_{ij} qij

注意到此时我们的损失函数中包含两个求和符号,它们分别枚举了语料库中的每个中心词和其对应的每个背景词。实际上我们还可以采用另一种计数方式,那就是直接枚举每个词分别作为中心词和背景词的情况:

− ∑ i ∈ V ∑ j ∈ V x i j log ⁡ q i j -\sum_{i\in\mathcal{V}}\sum_{j\in\mathcal{V}} x_{ij}\log q_{ij} iVjVxijlogqij

其中 x i j x_{ij} xij 表示整个数据集中 w j w_j wj 作为 w i w_i wi 的背景词的次数总和。

我们还可以将该式进一步地改写为交叉熵 (cross-entropy) 的形式如下:

− ∑ i ∈ V x i ∑ j ∈ V p i j log ⁡ q i j -\sum_{i\in\mathcal{V}}x_i\sum_{j\in\mathcal{V}}p_{ij} \log q_{ij} iVxijVpijlogqij

其中 x i x_i xi w i w_i wi 的背景词窗大小总和, p i j = x i j / x i p_{ij}=x_{ij}/x_i pij=xij/xi w j w_j wj w i w_i wi 的背景词窗中所占的比例。

从这里可以看出,我们的词嵌入方法实际上就是想让模型学出 w j w_j wj 有多大概率是 w i w_i wi 的背景词,而真实的标签则是语料库上的统计数据。同时,语料库中的每个词根据 x i x_i xi 的不同,在损失函数中所占的比重也不同。

注意到目前为止,我们只是改写了 Skip-Gram 模型损失函数的表面形式,还没有对模型做任何实质上的改动。而在 Word2Vec 之后提出的 GloVe 模型,则是在之前的基础上做出了以下几点改动:

  1. 使用非概率分布的变量 p i j ′ = x i j p'_{ij}=x_{ij} pij=xij q ′ i j = exp ⁡ ( u j ⊤ v i ) q′_{ij}=\exp(\boldsymbol{u}^\top_j\boldsymbol{v}_i) qij=exp(ujvi),并对它们取对数;
  2. 为每个词 w i w_i wi 增加两个标量模型参数:中心词偏差项 b i b_i bi 和背景词偏差项 c i c_i ci,松弛了概率定义中的规范性;
  3. 将每个损失项的权重 x i x_i xi 替换成函数 h ( x i j ) h(x_{ij}) h(xij),权重函数 h ( x ) h(x) h(x) 是值域在 [ 0 , 1 ] [0,1] [0,1] 上的单调递增函数,松弛了中心词重要性与 x i x_i xi 线性相关的隐含假设;
  4. 用平方损失函数替代了交叉熵损失函数。

综上,我们获得了 GloVe 模型的损失函数表达式:
∑ i ∈ V ∑ j ∈ V h ( x i j ) ( u j ⊤ v i + b i + c j − log ⁡ x i j ) 2 \sum_{i\in\mathcal{V}}\sum_{j\in\mathcal{V}} h(x_{ij}) (\boldsymbol{u}^\top_j\boldsymbol{v}_i+b_i+c_j-\log x_{ij})^2 iVjVh(xij)(ujvi+bi+cjlogxij)2

由于这些非零 x i j x_{ij} xij 是预先基于整个数据集计算得到的,包含了数据集的全局统计信息,因此 GloVe 模型的命名取“全局向量”(Global Vectors)之意。

载入预训练的 GloVe 向量

GloVe 官方 提供了多种规格的预训练词向量,语料库分别采用了维基百科、CommonCrawl和推特等,语料库中词语总数也涵盖了从60亿到8,400亿的不同规模,同时还提供了多种词向量维度供下游模型使用。

torchtext.vocab 中已经支持了 GloVe, FastText, CharNGram 等常用的预训练词向量,我们可以通过声明 torchtext.vocab.GloVe 类的实例来加载预训练好的 GloVe 词向量。
glove = vocab.GloVe(name='6B', dim=50, cache=cache_dir)
返回
stoi: 词到索引的字典:
itos: 一个列表,索引到词的映射;
vectors: 词向量。

求近义词

使用余弦相似度来搜索近义词的算法。为了在求类比词时重用其中的求k近邻(k-nearest neighbors)的逻辑

求类比词

搜索与vec©+vec(b)−vec(a)vec©+vec(b)−vec(a)的结果向量最相似的词向量。

文本情感分类

文本分类是自然语言处理的一个常见任务,它把一段不定长的文本序列变换为文本的类别。本节关注它的一个子问题:使用文本情感分类来分析文本作者的情绪。这个问题也叫情感分析,并有着广泛的应用。

同搜索近义词和类比词一样,文本分类也属于词嵌入的下游应用。在本节中,我们将应用预训练的词向量和含多个隐藏层的双向循环神经网络与卷积神经网络,来判断一段不定长的文本序列中包含的是正面还是负面的情绪。后续内容将从以下几个方面展开:

  1. 文本情感分类数据集
  2. 使用循环神经网络进行情感分类
  3. 使用卷积神经网络进行情感分类

文本情感分类数据

我们使用斯坦福的IMDb数据集(Stanford’s Large Movie Review Dataset)作为文本情感分类的数据集。

读取数据

数据集文件夹结构:

| aclImdb_v1
    | train
    |   | pos
    |   |   | 0_9.txt  
    |   |   | 1_7.txt
    |   |   | ...
    |   | neg
    |   |   | 0_3.txt
    |   |   | 1_1.txt
    |   | ...
    | test
    |   | pos
    |   | neg
    |   | ...
    | ...

预处理数据

读取数据后,我们先根据文本的格式进行单词的切分,再利用 torchtext.vocab.Vocab 创建词典。

创建数据迭代器

利用 torch.utils.data.TensorDataset,可以创建 PyTorch 格式的数据集,从而创建数据迭代器。

使用循环神经网络

双向循环神经网络

“双向循环神经网络”一节中,我们介绍了其模型与前向计算的公式,这里简单回顾一下:

Image Name

Image Name

给定输入序列 { X 1 , X 2 , … , X T } \{\boldsymbol{X}_1,\boldsymbol{X}_2,\dots,\boldsymbol{X}_T\} {X1,X2,,XT},其中 X t ∈ R n × d \boldsymbol{X}_t\in\mathbb{R}^{n\times d} XtRn×d 为时间步(批量大小为 n n n,输入维度为 d d d)。在双向循环神经网络的架构中,设时间步 t t t 上的正向隐藏状态为 H → t ∈ R n × h \overrightarrow{\boldsymbol{H}}_{t} \in \mathbb{R}^{n \times h} H tRn×h (正向隐藏状态维度为 h h h),反向隐藏状态为 H ← t ∈ R n × h \overleftarrow{\boldsymbol{H}}_{t} \in \mathbb{R}^{n \times h} H tRn×h (反向隐藏状态维度为 h h h)。我们可以分别计算正向隐藏状态和反向隐藏状态:

H → t = ϕ ( X t W x h ( f ) + H → t − 1 W h h ( f ) + b h ( f ) ) H ← t = ϕ ( X t W x h ( b ) + H ← t + 1 W h h ( b ) + b h ( b ) ) \begin{aligned} &\overrightarrow{\boldsymbol{H}}_{t}=\phi\left(\boldsymbol{X}_{t} \boldsymbol{W}_{x h}^{(f)}+\overrightarrow{\boldsymbol{H}}_{t-1} \boldsymbol{W}_{h h}^{(f)}+\boldsymbol{b}_{h}^{(f)}\right)\\ &\overleftarrow{\boldsymbol{H}}_{t}=\phi\left(\boldsymbol{X}_{t} \boldsymbol{W}_{x h}^{(b)}+\overleftarrow{\boldsymbol{H}}_{t+1} \boldsymbol{W}_{h h}^{(b)}+\boldsymbol{b}_{h}^{(b)}\right) \end{aligned} H t=ϕ(XtWxh(f)+H t1Whh(f)+bh(f))H t=ϕ(XtWxh(b)+H t+1Whh(b)+bh(b))

其中权重 W x h ( f ) ∈ R d × h , W h h ( f ) ∈ R h × h , W x h ( b ) ∈ R d × h , W h h ( b ) ∈ R h × h \boldsymbol{W}_{x h}^{(f)} \in \mathbb{R}^{d \times h}, \boldsymbol{W}_{h h}^{(f)} \in \mathbb{R}^{h \times h}, \boldsymbol{W}_{x h}^{(b)} \in \mathbb{R}^{d \times h}, \boldsymbol{W}_{h h}^{(b)} \in \mathbb{R}^{h \times h} Wxh(f)Rd×h,Whh(f)Rh×h,Wxh(b)Rd×h,Whh(b)Rh×h 和偏差 b h ( f ) ∈ R 1 × h , b h ( b ) ∈ R 1 × h \boldsymbol{b}_{h}^{(f)} \in \mathbb{R}^{1 \times h}, \boldsymbol{b}_{h}^{(b)} \in \mathbb{R}^{1 \times h} bh(f)R1×h,bh(b)R1×h 均为模型参数, ϕ \phi ϕ 为隐藏层激活函数。

然后我们连结两个方向的隐藏状态 H → t \overrightarrow{\boldsymbol{H}}_{t} H t H ← t \overleftarrow{\boldsymbol{H}}_{t} H t 来得到隐藏状态 H t ∈ R n × 2 h \boldsymbol{H}_{t} \in \mathbb{R}^{n \times 2 h} HtRn×2h,并将其输入到输出层。输出层计算输出 O t ∈ R n × q \boldsymbol{O}_{t} \in \mathbb{R}^{n \times q} OtRn×q(输出维度为 q q q):

O t = H t W h q + b q \boldsymbol{O}_{t}=\boldsymbol{H}_{t} \boldsymbol{W}_{h q}+\boldsymbol{b}_{q} Ot=HtWhq+bq

其中权重 W h q ∈ R 2 h × q \boldsymbol{W}_{h q} \in \mathbb{R}^{2 h \times q} WhqR2h×q 和偏差 b q ∈ R 1 × q \boldsymbol{b}_{q} \in \mathbb{R}^{1 \times q} bqR1×q 为输出层的模型参数。不同方向上的隐藏单元维度也可以不同。

利用 torch.nn.RNNtorch.nn.LSTM 模组,我们可以很方便地实现双向循环神经网络

使用卷积神经网络

一维卷积层

在介绍模型前我们先来解释一维卷积层的工作原理。与二维卷积层一样,一维卷积层使用一维的互相关运算。在一维互相关运算中,卷积窗口从输入数组的最左方开始,按从左往右的顺序,依次在输入数组上滑动。当卷积窗口滑动到某一位置时,窗口中的输入子数组与核数组按元素相乘并求和,得到输出数组中相应位置的元素。如图所示,输入是一个宽为 7 的一维数组,核数组的宽为 2。可以看到输出的宽度为 7−2+1=6,且第一个元素是由输入的最左边的宽为 2 的子数组与核数组按元素相乘后再相加得到的:0×1+1×2=2。

Image Name
多输入通道的一维互相关运算也与多输入通道的二维互相关运算类似:在每个通道上,将核与相应的输入做一维互相关运算,并将通道之间的结果相加得到输出结果。下图展示了含 3 个输入通道的一维互相关运算,其中阴影部分为第一个输出元素及其计算所使用的输入和核数组元素:0×1+1×2+1×3+2×4+2×(−1)+3×(−3)=2。

Image Name
由二维互相关运算的定义可知,多输入通道的一维互相关运算可以看作单输入通道的二维互相关运算。如图所示,我们也可以将图中多输入通道的一维互相关运算以等价的单输入通道的二维互相关运算呈现。这里核的高等于输入的高。图中的阴影部分为第一个输出元素及其计算所使用的输入和核数组元素:2×(−1)+3×(−3)+1×3+2×4+0×1+1×2=2。

Image Name

注:反之仅当二维卷积核的高度等于输入的高度时才成立。

之前的例子中输出都只有一个通道。我们在“多输入通道和多输出通道”一节中介绍了如何在二维卷积层中指定多个输出通道。类似地,我们也可以在一维卷积层指定多个输出通道,从而拓展卷积层中的模型参数。

时序最大池化层

类似地,我们有一维池化层。TextCNN 中使用的时序最大池化(max-over-time pooling)层实际上对应一维全局最大池化层:假设输入包含多个通道,各通道由不同时间步上的数值组成,各通道的输出即该通道所有时间步中最大的数值。因此,时序最大池化层的输入在各个通道上的时间步数可以不同。

Image Name

注:自然语言中还有一些其他的池化操作,可参考这篇博文

为提升计算性能,我们常常将不同长度的时序样本组成一个小批量,并通过在较短序列后附加特殊字符(如0)令批量中各时序样本长度相同。这些人为添加的特殊字符当然是无意义的。由于时序最大池化的主要目的是抓取时序中最重要的特征,它通常能使模型不受人为添加字符的影响。

TextCNN 模型

TextCNN 模型主要使用了一维卷积层和时序最大池化层。假设输入的文本序列由 n n n 个词组成,每个词用 d d d 维的词向量表示。那么输入样本的宽为 n n n,输入通道数为 d d d。TextCNN 的计算主要分为以下几步。

  1. 定义多个一维卷积核,并使用这些卷积核对输入分别做卷积计算。宽度不同的卷积核可能会捕捉到不同个数的相邻词的相关性。
  2. 对输出的所有通道分别做时序最大池化,再将这些通道的池化输出值连结为向量。
  3. 通过全连接层将连结后的向量变换为有关各类别的输出。这一步可以使用丢弃层应对过拟合。

下图用一个例子解释了 TextCNN 的设计。这里的输入是一个有 11 个词的句子,每个词用 6 维词向量表示。因此输入序列的宽为 11,输入通道数为 6。给定 2 个一维卷积核,核宽分别为 2 和 4,输出通道数分别设为 4 和 5。因此,一维卷积计算后,4 个输出通道的宽为 11−2+1=10,而其他 5 个通道的宽为 11−4+1=8。尽管每个通道的宽不同,我们依然可以对各个通道做时序最大池化,并将 9 个通道的池化输出连结成一个 9 维向量。最终,使用全连接将 9 维向量变换为 2 维输出,即正面情感和负面情感的预测。

Image Name

下面我们来实现 TextCNN 模型。与上一节相比,除了用一维卷积层替换循环神经网络外,这里我们还使用了两个嵌入层,一个的权重固定,另一个则参与训练。

图像增广

图像增广(image augmentation)技术通过对训练图像做一系列随机改变,来产生相似但又不同的训练样本,从而扩大训练数据集的规模。图像增广的另一种解释是,随机改变训练样本可以降低模型对某些属性的依赖,从而提高模型的泛化能力。例如,我们可以对图像进行不同方式的裁剪,使感兴趣的物体出现在不同位置,从而减轻模型对物体出现位置的依赖性。我们也可以调整亮度、色彩等因素来降低模型对色彩的敏感度

常用的图像增广方法

翻转和裁剪

torchvision.transforms.RandomHorizontalFlip()水平
torchvision.transforms.RandomVerticalFlip()垂直
torchvision.transforms.RandomResizedCrop(200, scale=(0.1, 1), ratio=(0.5, 2))每次随机裁剪出一块面积为原面积 10 % ∼ 100 % 10\% \sim 100\% 10%100%的区域,且该区域的宽和高之比随机取自 0.5 ∼ 2 0.5 \sim 2 0.52,然后再将该区域的宽和高分别缩放到200像素

变化颜色

从4个方面改变图像的颜色:亮度(brightness)、对比度(contrast)、饱和度(saturation)和色调(hue)
torchvision.transforms.ColorJitter(brightness=0.5, contrast=0.5, saturation=0.5, hue=0)

叠加多个图像增广方法

torchvision.transforms.Compose([torchvision.transforms.RandomHorizontalFlip(),
							torchvision.transforms.RandomResizedCrop(200, scale=(0.1, 1), ratio=(0.5, 2)),
							torchvision.transforms.RandomHorizontalFlip()])

微调

在前面的一些章节中,我们介绍了如何在只有6万张图像的Fashion-MNIST训练数据集上训练模型。我们还描述了学术界当下使用最广泛的大规模图像数据集ImageNet,它有超过1,000万的图像和1,000类的物体。然而,我们平常接触到数据集的规模通常在这两者之间。

假设我们想从图像中识别出不同种类的椅子,然后将购买链接推荐给用户。一种可能的方法是先找出100种常见的椅子,为每种椅子拍摄1,000张不同角度的图像,然后在收集到的图像数据集上训练一个分类模型。这个椅子数据集虽然可能比Fashion-MNIST数据集要庞大,但样本数仍然不及ImageNet数据集中样本数的十分之一。这可能会导致适用于ImageNet数据集的复杂模型在这个椅子数据集上过拟合。同时,因为数据量有限,最终训练得到的模型的精度也可能达不到实用的要求。

为了应对上述问题,一个显而易见的解决办法是收集更多的数据。然而,收集和标注数据会花费大量的时间和资金。例如,为了收集ImageNet数据集,研究人员花费了数百万美元的研究经费。虽然目前的数据采集成本已降低了不少,但其成本仍然不可忽略。

另外一种解决办法是应用迁移学习(transfer learning),将从源数据集学到的知识迁移到目标数据集上。例如,虽然ImageNet数据集的图像大多跟椅子无关,但在该数据集上训练的模型可以抽取较通用的图像特征,从而能够帮助识别边缘、纹理、形状和物体组成等。这些类似的特征对于识别椅子也可能同样有效。

本节我们介绍迁移学习中的一种常用技术:微调(fine tuning)。如图9.1所示,微调由以下4步构成。

  1. 在源数据集(如ImageNet数据集)上预训练一个神经网络模型,即源模型。
  2. 创建一个新的神经网络模型,即目标模型。它复制了源模型上除了输出层外的所有模型设计及其参数。我们假设这些模型参数包含了源数据集上学习到的知识,且这些知识同样适用于目标数据集。我们还假设源模型的输出层跟源数据集的标签紧密相关,因此在目标模型中不予采用。
  3. 为目标模型添加一个输出大小为目标数据集类别个数的输出层,并随机初始化该层的模型参数。
  4. 在目标数据集(如椅子数据集)上训练目标模型。我们将从头训练输出层,而其余层的参数都是基于源模型的参数微调得到的。

Image Name

当目标数据集远小于源数据集时,微调有助于提升模型的泛化能力。

热狗识别

接下来我们来实践一个具体的例子:热狗识别。我们将基于一个小数据集对在ImageNet数据集上训练好的ResNet模型进行微调。该小数据集含有数千张包含热狗和不包含热狗的图像。我们将使用微调得到的模型来识别一张图像中是否包含热狗。

首先,导入实验所需的包或模块。torchvision的models包提供了常用的预训练模型。如果希望获取更多的预训练模型,可以使用使用pretrained-models.pytorch仓库。

注: 在使用预训练模型时,一定要和预训练时作同样的预处理。
如果你使用的是torchvisionmodels,那就要求:
All pre-trained models expect input images normalized in the same way, i.e. mini-batches of 3-channel RGB images of shape (3 x H x W), where H and W are expected to be at least 224. The images have to be loaded in to a range of [0, 1] and then normalized using mean = [0.485, 0.456, 0.406] and std = [0.229, 0.224, 0.225].

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值