研究背景
- 知识数量的提升,使得各个垂直领域都形成了专业领域的知识图谱,或者同一领域也存在多个重叠的知识图谱。
- 不同机构,个人可以自由构建所需知识图图谱,各个知识图谱的数据来源非常广泛,存在质量参差不齐,跨领域问题。
- 知识融合是指将这些知识库联合起来实现知识的互补,扩大知识库规模,满足用户跨领域的信息需求
定义
- 通过对多个相关知识库的对齐、关联、合并,使其成为一个有机整体,是一种提供更全面知识共享的重要方法。
分类
- 按照知识图谱的类型
- 竖直方向融合
- 融合高层的通用本体与底层的领域本体或实例数据。
- 例如:YAGO
- 水平方向的融合
- 融合相同层次的知识图谱,实现实例数据的互补
- 例如:BabelNet:融合了不同语言的异构知识图谱
- 竖直方向融合
- 按照融合元素的对象
- 框架匹配
- 也称本体对齐,对概念、属性、关系等知识描述体系进行匹配和融合
- 由于知识体系自身的分散性,不同的用户可以构造股通的知识体系,所以导致在同一个或重叠领域产 生许多不同的知识体系,使得不同的知识图谱难以联合应用,框架匹配可以很好地解决知识体系的异构性。
- 技术分类
- 元素级匹配
- 定义:独立判断两个知识图谱中的元素是否应该匹配
- 实
- 元素级匹配
- 框架匹配