启发式信息的表示。
回溯算法也叫试探法,它是一种系统地搜索问题的解的方法。
用回溯算法解决问题的一般步骤:
1 针对所给问题,定义问题的解空间,它至少包含问题的一个(最优)解。
2 确定易于搜索的解空间结构,使得能用回溯法方便地搜索整个解空间。
3 以深度优先的方式搜索解空间,并且在搜索过程中用剪枝函数避免无效搜索。
回溯算法的基本思想是:从一条路往前走,能进则进,不能进则退回来,换一条路再试。
例子八皇后问题:
在8X8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行、同一列或同一斜线上,问有多少种摆法。
int vis[3][16]; //因为是逐行放置的,则皇后肯定不会横向攻击,所以只需检测纵向和斜向攻击
//vis[0]表示纵向是否有冲突
//vis[1]表示左斜对角线是否有冲突
//vis[2]表示右斜对角线是否有冲突
int tot; //解个数
int C[8];//解的放置方法
void search(int cur){
int i,j;
if(cur==8) tot++; //递归边界
else for (int i = 0; i < 8; i++)
{
if (!vis[0][i] && !vis[1][cur+i] && !vis[2][cur-i+8]) //剪枝,关键在于如何构建全局变量来剪枝!
{
C[cur]=i; //把cur行的皇后放在i列,如何不用打印解,此C可舍弃
vis[0][i]=vis[1][cur+i]=vis[2][cur-i+8]=1;//修改列和对角线有冲突的位置
search(cur+1);
vis[0][i]=vis[1][cur+i]=vis[2][cur-i+8]=0;//切记!一定要改回来!!
}
}
}