[题解|总结|补题]Educational Codeforces Round 108 (Rated for Div. 2)

这篇博客分享了四道算法竞赛题目,包括分豆子问题、走格子找价值、伯兰德区域最大价值和区间动态规划。解题策略涉及贪心算法、思维分析、前缀和与排序处理,同时强调了细节处理和边界条件的重要性。博主通过实例解析了每道题目的思路和解决方案,并提供了代码实现。
摘要由CSDN通过智能技术生成

在这里插入图片描述

A.分豆子(贪心+思维)

题意

给你t组输入
每组输入 r (red), b(blue), d(绝对差值)

目的:
给所有的豆子打包,问是否可以全打包(YES,NO)

条件:
对于每个包,红豆的个数>=1,蓝豆的个数>=1,并且两个的个数差值<=d

思路:
贪心,以小定大,我们把每个小的都当作一个包,
然后乘上d 就可以算出所有包的含有豆子的总和,如果比Maxn要大那么肯定行,否则不行

教训:
因为这里牵扯到 int*int 没注意到 1e9的范围,WA了一次
同理还有当用 / 需要判断是否有奇偶卡判断

代码:

int main()
{
    int t;
    cin>>t;
    while(t -- )
    {
        ll r,b,d;
        cin>>r>>b>>d;
 
        ll  minn =min(r,b);
        ll maxn =max(r,b);
        if((minn)*(d+1) >= maxn)
            cout<<"YES"<<endl;
        else
            cout<<"NO"<<endl;
    }
    return 0;
}

B.走nm找k(思维)

给你t组输入
每组输入 n ,m ,k(走的价值数 (并不是单纯的那种))

目的:
问你从1,1走到n和m能否恰好花费k个价值

条件:
每次只能往下和往右走
价值计算如下 burles(就当他是价值吧 认不到)在这里插入图片描述

思路:
不管我们是怎么走,斜着走还是横竖着走,最小的方案其实都是固定不变的, 就比如你斜着走,你也是需要移动两步,所以在x和y上运动的距离其实是一样的(有点像中学物理emm)

教训:
这题虽然一遍过,但是还是A慢了,一开始以为是bfs(tm cf终于考算法了),结果不然bfs最后样例还没过(怀疑人生),结果就去看格子数(也就是价值的计算),艹了这个价值计算有诈,(优化bfs? 算了算了),继续看了会才发现是思维题
(总之cf ab题很少遇到裸的算法题就对了)

代码:

int main()
{
    int t;
    cin>>t;
 
    while(t -- )
    {
        cin>>n>>m>>k;
 
        if(n  == 1)
        {
            int d = (m - 1) ;
            if( d== k)
                cout<<"YES"<<endl;
            else
                cout<<"NO"<<endl;
        }
        else if(m == 1)
        {
            int d = (n-1) ;
            if(d == k)
                cout<<"YES"<<endl;
            else
                cout<<"NO"<<endl;
        }
        else
        {
            int d= (n-1) ;
            d+=(m-1) *(n);
            if(d==k)
            cout<<"YES"<<endl;
            else
                cout<<"NO"<<endl;
 
        }
 
    }
    // cout<<d[1][1];
    return 0;
}

C. Berland Regional(前缀和,排序,细节处理)

给你t组输入
每组输入 n ,m (表示学生i的学校,学生i的代码能力)

目的:
将每个学校分成k份(不足则不成组)求 所有学校的最大价值总和
在这里插入图片描述
在这里插入图片描述
因为学校2只有三个学生 ,所以只能分一组,因此最大价值总和28

思路:
牵扯到部分区间和,预先想到前缀和
又因为需要最大所以还需要排序

教训:
记得开longlong
code:

#include <bits/stdc++.h>
using namespace std;
const int N  =2e5+10;
typedef long long ll;

vector<ll> sum[N];
vector<ll> g[N];
ll ans[N];
ll sc[N];

int n,t;
bool cmp(ll a,ll b)
{
    return a>b;
}
int main()
{
    cin>>t;
    while(t -- )
    {

        cin>>n;
        memset(ans,0,sizeof ans);
        for(int i =1; i<=n; i++)
        {
            cin>>sc[i];
            g[i].clear();
        }
        for(int j=1; j<=n; j++)
        {
            int x;
            cin>>x;
            g[sc[j]].push_back(x);
        }
        for(int i=1; i<=n; i++)
            sort(g[i].begin(),g[i].end(),cmp);

        int maxx = 0 ;
        for(int i=1; i<=n; i++)
        {
            int len  =g[i].size();
            maxx = max(len,maxx);
            for(int j=1; j<len; j++)
            {
                g[i][j] = g[i][j-1] +g[i][j];
            }
        }

        for(int i =1; i<=n; i++)
        {
            int len = g[i].size();
            for(int j=1; j<=len; j++)
            {
                ans[j] += g[i][len -1 - len%j];
            }
        }

        for(int i=1; i<=n; i++)
            cout<<ans[i]<<" ";
        cout<<endl;
    }
    return 0;
}

D.(补题 区间DP?不会,另一种老大哥做法)

题意:

给你一个n 表示数组a和b的长度

目的:
求最大的
在这里插入图片描述
条件:
可以对a区间做一次反转(任何区间的反转)

思路:

n = 5000 很容易想到是n2 的算法,如果单纯的枚举i,j是O(n3),所以考虑枚举顺序使得可以用到上次的结果,很容易想到以一个点为中心翻转,类似暴力枚举回文串。
code:
大佬的博客
先贴在这,上课去了

#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<unordered_map>
#include<unordered_set>
#include<set>
#include<map>
#include<queue>
#include<vector>

using namespace std;
#define x first
#define y second
#define int long long 
typedef pair<int ,int > PII;
typedef long long ll;
const int INF = 0x3f3f3f3f,mod = 1e9 + 7;
const int N = 5010;
int a[N],b[N];
int s[N];
signed main(){
	int n;
	scanf("%lld",&n);
	for(int i = 1;i <= n;i++) scanf("%lld",&a[i]);
	for(int i = 1;i <= n;i++) scanf("%lld",&b[i]),s[i] = a[i] * b[i];
	for(int i = 1;i <= n;i++) s[i] += s[i - 1];
	int ans = s[n]; 
//	cout << s[n] <<endl;
	for(int i = 1;i <= n;i++){
		int res = s[i] - s[i - 1];
		for(int len = 1;len <= n;len++){
			int l = i - len,r = i + len ;
			if(l <= 0 || r > n) break;
			res += a[l] * b[r] + a[r] * b[l];
			int t = s[n] - (s[r] - s[l - 1]);
			ans = max(ans,res + t); 
		}
		res = 0;
		for(int len = 1;len <= n;len++){
			int l = i - len + 1,r = i + len ;
			if(l <= 0 || r > n) break;
			res += a[l] * b[r] + a[r] * b[l];
			int t = s[n] - (s[r] - s[l - 1]);
			ans = max(ans,res + t);
		}
	}
	cout << ans << endl;
	return 0;
} 
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值