[算法总结] LCS 最长公共子序列

划分图

在这里插入图片描述

集合

第一个序列的 前i个字母 和 第二个 序列的 前j个字母的公共子序列

属性: MAX
(求最大值 是可以有重复的 但是 求数量是不能有重复的)

集合的划分:

用a[i] 和 b[j] 表示当前位置的字符

所以f[i][j] 就可以表示为
选a[i]b[j] , 不选a[i]b[j],选a[i]不选b[j],选b[j]不选a[i]

遗留问题:

中间这两个集合的 最大值一定小于f[i-1,j] 或f[i,j-1]所以我们就可以使用这两个f 来表示这两个集合
(也就是这里 重复了)

在这里插入图片描述

为什么不写f[i-1][j-1]

因为f[i-1][j-1] 包含在了f[i-1][j] , f[i][j-1]
在这里插入图片描述

Code:

#include <bits/stdc++.h>
using namespace std;
const int N  =1010;
int n,m;

char a[N],b[N];
int f[N][N];
int main()
{
    cin>>n>>m;
    cin>>a+1>>b+1;
    for(int i=1;i<=n;i++)
    {
        for(int j=1;j<=m;j++)
        {
            f[i][j] = max(f[i-1][j],f[i][j-1]);
            if(a[i]==b[j])
            f[i][j]=  max(f[i][j],f[i-1][j-1]+1);
        }
    }
    cout<<f[n][m];

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值