前言
传送门 : https://www.luogu.com.cn/problem/P1122
不愧是 dp和树 两大结合 不是难一点 哈哈哈哈
思路
看完题目,画了一遍图,理解了题意
大概都知道了
f [ i ] f[i] f[i] 必然是一维状态转移 , 二维 ? f [ i ] [ 2 ] f[i][2] f[i][2] 那么不选的时候 不是很没必要吗
因此我们考虑这个状态表示什么 :
根据以往的经验, 大概率表示 i 的 子 树 所 能 求 的 最 大 值 i的子树 所能求的最大值 i的子树所能求的最大值
因此我们可以很简单的知道状态转移方程 :
f [ i ] = m a x ( f [ j ] , 0 ) + a [ i ] ) f[i] = max(f[j],0) + a[i]) f[i]=max(f[j],0)+a[i])
CODE
#include <bits/stdc++.h>
using namespace std;
const int N = 1e4+6100;
const int INF = 0x3f3f3f3f;
int f[N],a[N];
int e[N*2],ne[N*2],h[N*2],idx;
void add(int a,int b)
{
e[idx] = b,ne[idx] = h[a],h[a] = idx++;
}
void dfs(int u ,int fa)
{
f[u] = a[u];
for(int i = h[u];i!=-1;i=ne[i])
{
int j = e[i];
if(j!=fa)
{
dfs(j,u);
if(f[j]>0)
f[u]+=f[j];
}
}
}
void solve()
{
int n;cin>>n;
memset(h,-1,sizeof h);
for(int i=1;i<=n;i++)
cin>>a[i];
for(int i=1;i<n;i++)
{
int a,b;cin>>a>>b;
add(a,b),add(b,a);
}
int res = -INF;
dfs(1,0);
for(int i=1;i<=n;i++)
res = max(res,f[i]);
cout<<res<<endl;
}
int main()
{
ios::sync_with_stdio(false);
solve();
return 0;
}