[Acwing] 1125.牛的旅行 floyd

本文讲解了如何使用Floyd-Warshall算法求解加边前后网络的最大流量问题,通过先计算加边前的最大距离,再结合边的权重更新最大值。通过实例展示了如何在小数据范围内高效求解,并给出了C++代码实现。
摘要由CSDN通过智能技术生成

前言

传送门 :

思路

对于这题的答案
a n s = m a x { 加 边 前 的 最 大 值 , 加 边 后 的 最 大 值 } ans = max\{加边前的最大值,加边后的最大值\} ans=max{,}

因为数据范围很小所以我们可以跑 f l o y d floyd floyd

先求出所有点在加边前的最大值

最后在通过 m a x n [ i ] + m a x n [ j ] + d i s t ( i , j ) maxn[i]+maxn[j]+dist(i,j) maxn[i]+maxn[j]+dist(i,j)求出加边后的最大值

CODE

int n,m,t;
pdd q[N];
double d[N][N];
double maxn[N];
char g[N][N];

double get_dist(pdd a,pdd b)
{
	
	double dx = a.x - b.x;
	double dy = a.y - b.y;
	return sqrt(dx*dx + dy*dy);
}


void solve()
{
	cin>>n;
	for(int i=0;i<n;i++)
	cin>>q[i].x>>q[i].y;
	for(int i=0;i<n;i++)
	cin>>g[i];
	
	for(int i=0;i<n;i++)
		for(int j = 0;j<n;j++)
		if(i == j ) d[i][j] =  0;
		else if(g[i][j] == '1')
		d[i][j] =  get_dist(q[i],q[j]);
		else d[i][j]  = INF;
		
	for(int k = 0 ;k<n;k++)
		for(int i =0;i<n;i++)
			for(int j = 0;j<n;j++)
			{
				d[i][j] = min(d[i][j],d[i][k]+d[k][j]);
			}
		
	double r1 = 0 ;
	for(int i = 0;i<n;i++)
	{
		for(int j = 0 ;j<n;j++)
			if(d[i][j]<INF/2)
			maxn[i] = max(maxn[i],d[i][j]);
			
		r1  = max(r1,maxn[i]);
	}
	
	double r2 = INF;
	for(int i = 0;i<n;i++)
		for(int j = 0 ;j<n;j++)
			if(d[i][j]>INF/2)
			r2 = min(r2,maxn[i]+maxn[j]+get_dist(q[i],q[j]));
	
	printf("%.6lf",max(r1,r2));
	
			
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值