[Acwing] 343.排序 floyd传递闭包

前言

处理过程很细致,值得二刷
传送门 :

思路

对于每一次读入我们都用 f l o y d floyd floyd传递闭包,也就是实现 d i s t [ i ] [ j ] & & d i s t [ j ] [ k ] 推 出 d i s t [ i ] [ k ] dist[i][j]\&\&dist[j][k] 推出 dist[i][k] dist[i][j]&&dist[j][k]dist[i][k]

同时对于每一次输入之后,我们都需要判断是否所有边都联通也就是关系是否明确

最后输出关系的时候,我们需要枚举整个图反着退出最小的一个点,并且标记

CODE

//传递闭包 
void floyd()
{
	memcpy(d,g,sizeof d);
	
	for(int k = 0 ;k<n;k++)
		for(int i= 0;i<n;i++)
			for(int j=0;j<n;j++)
			if(d[i][k] && d[k][j])
			d[i][j] = 1;
			
}
int check()
{
	for(int i = 0;i<n;i++)
	if(d[i][i])return 2;
	
	for(int i=0;i<n;i++)
		for(int j = 0;j<i;j++)
		if(!d[i][j] && !d[j][i])
		return 0;
	
	return 1;
}

char get_min()
{
	for(int i = 0;i<n;i++)
	{
		if(!st[i])
		{
			bool flag = true;
			for(int j  = 0;j<n;j++)
				if(!st[j] && d[j][i])
				{
					flag  =false;
					break;
				}
			if(flag)
			{
				st[i] = 1;
				return 'A'+i;
			}
		}
	}
}
void solve()
{
	while(cin>>n>>m,n||m)
	{
		memset(g,0,sizeof g);
		int type  = 0, t;
		//type 表示加入了当前边之后是哪种状态
		//t表示确定当前状态所需的步数
		
		for(int i=1;i<=m;i++)
		{
			char ch[5];
			cin>>ch;
			
			int a =  ch[0] - 'A';
			int b =  ch[2] - 'A';
			if(!type)
			{
				g[a][b] = 1;
				floyd();
				type = check();
				if(type)
				t = i ;
				
			}
		}
		
		if(!type)
		cout<<"Sorted sequence cannot be determined."<<endl;
		else if(type == 2)
		cout<<"Inconsistency found after "<<t<<" relations."<<endl;
		else
		{
			memset(st,0,sizeof st);
			cout<<"Sorted sequence determined after "<<t<<" relations: ";
			for(int i = 0;i<n;i++)
			cout<<get_min();
			cout<<"."<<endl;

		}
	}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值