[Acwing] 10. 有依赖的背包问题 树形DP+分组背包

本文介绍了一种结合树形动态规划(DP)和分组背包技巧来解决复杂问题的方法。通过以子树体积进行划分,并将每个子树视为一个分组,将原问题转化为分组背包问题。利用状态转移方程,可以计算以特定节点为根的子树中,选择不超过特定体积的最大价值。代码示例展示了如何实现这一策略,最终求解最大价值。
摘要由CSDN通过智能技术生成

前言

树形DP+分组背包的组合拳
传送门 :

思路

集合划分 :
以子树划分 ? 以子树内的体积划分 ?

  • 以子树划分 显然 2 k 2^k 2k 最快情况下,显然是不太理想的
  • 以子树内的体积划分,那么就可以划分成 0 − m 0 -m 0m 的划分

因此我们可以把每一个子树看成一个组,因此问题就转换成为分组背包的问题

因此状态表示就是 :
f [ u ] [ k ] f[u][k] f[u][k] 表示以 u u u为根节点的子树中选,体积不超过 k k k的最大价值

因此根据AcWing285.上司的舞会 我们就可以得知

状态转移方程为 :

f [ u ] [ k ] = f [ u ] [ j − k ] + f [ s o n ] [ k ] f[u][k] = f[u][j-k]+f[son][k] f[u][k]=f[u][jk]+f[son][k]

剩余背包的最大价值和加入子节点的最大价值

CODE

const int N  = 110;
int f[N][N];
//f[u][j] 表示根节点为u 体积为j的所有选法中的最大价值
vector<int> g[N];

int v[N],w[N],p[N];
int n,m;

void dfs(int u)
{
	//节点必须寻上 f[u][v[u]~m] = w[u]
	for(int j  = v[u];j<=m;j++)
	f[u][j] = w[u];
	
	for(auto son : g[u])
	{
		dfs(son);
		
		//分组背包
		for(int j = m;j>=0;j--)
			for(int k = 0;k<=j-v[u];k++)
			if(j>=v[u])
			f[u][j] =  max(f[u][j],f[u][j-k]+f[son][k]);
	}
	
}
void solve()
{
	cin>>n>>m;
	int root = 0 ;
	
	for(int i=1;i<=n;i++)
	{
		cin>>v[i]>>w[i]>>p[i];
		if(p[i] == -1)
		root = i ;
		else
		g[p[i]].push_back(i);
	//因为依赖关系 不是双向边? 
	}	
	dfs(root);
	cout<<f[root][m]<<endl;
	
}
int main()
{
    //int t;cin>>t;while(t -- )
    solve();
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值