前言
树形DP+分组背包的组合拳
传送门 :
思路
集合划分 :
以子树划分 ? 以子树内的体积划分 ?
- 以子树划分 显然 2 k 2^k 2k 最快情况下,显然是不太理想的
- 以子树内的体积划分,那么就可以划分成 0 − m 0 -m 0−m 的划分
因此我们可以把每一个子树看成一个组,因此问题就转换成为分组背包的问题
因此状态表示就是 :
f
[
u
]
[
k
]
f[u][k]
f[u][k] 表示以
u
u
u为根节点的子树中选,体积不超过
k
k
k的最大价值
因此根据AcWing285.上司的舞会
我们就可以得知
状态转移方程为 :
f [ u ] [ k ] = f [ u ] [ j − k ] + f [ s o n ] [ k ] f[u][k] = f[u][j-k]+f[son][k] f[u][k]=f[u][j−k]+f[son][k]
剩余背包的最大价值和加入子节点的最大价值
CODE
const int N = 110;
int f[N][N];
//f[u][j] 表示根节点为u 体积为j的所有选法中的最大价值
vector<int> g[N];
int v[N],w[N],p[N];
int n,m;
void dfs(int u)
{
//节点必须寻上 f[u][v[u]~m] = w[u]
for(int j = v[u];j<=m;j++)
f[u][j] = w[u];
for(auto son : g[u])
{
dfs(son);
//分组背包
for(int j = m;j>=0;j--)
for(int k = 0;k<=j-v[u];k++)
if(j>=v[u])
f[u][j] = max(f[u][j],f[u][j-k]+f[son][k]);
}
}
void solve()
{
cin>>n>>m;
int root = 0 ;
for(int i=1;i<=n;i++)
{
cin>>v[i]>>w[i]>>p[i];
if(p[i] == -1)
root = i ;
else
g[p[i]].push_back(i);
//因为依赖关系 不是双向边?
}
dfs(root);
cout<<f[root][m]<<endl;
}
int main()
{
//int t;cin>>t;while(t -- )
solve();
return 0;
}