[abc] AtCoder Beginner Contest 241 F - Skate 非单步走bfs

这篇博客探讨了一个在大型网格图中寻找从起点到终点最短路径的问题。面对图规模达到1e9,传统的BFS算法面临挑战。作者提出使用map数据结构存储障碍物信息,并通过二分查找优化路径更新,有效地处理了大图的寻路问题。算法核心在于每次迭代中找到可到达的最近障碍物并更新当前位置。若遇到障碍物,路径长度加一,直至到达终点。如果无法到达终点,则输出-1。
摘要由CSDN通过智能技术生成

前言

传送门 :

题意

给定一个 N ∗ M ( 1 e 9 ) N *M (1e9) NM(1e9)的图,给定起点和终点,选定一个方向冲刺

只有在撞到障碍物的时候才会停下,问最少多少步到终点

思路

本题最大的难点就是,图有点大和 b f s bfs bfs不好操作

我们可以使用 m a p < i n t , p i i > L , R map<int,pii> L,R map<int,pii>L,R存储障碍物信息

然后对于当前位置,可以使用二分查找,找到可以到达的障碍物位置,然后每次更新位

置即可 , (具体看操作)

由于宏定义了#define x first | y second,所以查看代码的时候需要注意

Mycode

map<int,set<int>> L,R;
set<pii> done;
queue<pair<int,pii>> q;
int h,w,n;
int sx,sy,gx,gy;
void solve()
{
	cin>>h>>w>>n;
	cin>>sx>>sy>>gx>>gy;
	for(int i=1;i<=n;i++){
		int u,v;cin>>u>>v;
		L[u].insert(v);//行上的列
		R[v].insert(u);//列上的行
	}
	
	q.push({0,{sx,sy}});
	while(!q.empty()){
		auto t = q.front();
		q.pop();
		
		auto cost  = t.x;
		auto pos   = t.y;
		
		if(done.find(pos) != done.end())  continue;
		
		done.insert(pos);
		auto px = pos.x;
		auto py = pos.y;
		if(px == gx && py == gy){
			cout<<cost<<endl;
			return;
		}
		
		auto r = L[px];
		auto p = r.upper_bound(py);
		if(p!=r.begin()){
			auto left = p ;
			left --;
			q.push({cost+1,{px,*left+1}});
		}
		
		if(p!=r.end()){
			auto right=p;
			q.push({cost+1,{px,*right-1}});
		}
		
		
		auto l=R[py];
		auto v=l.upper_bound(px);
		if(v!=l.begin()){
			auto left=v;
			left--;
			q.push({cost+1,{*left+1,py}});
		}
		if(v!=l.end()){
			auto right=v;
			q.push({cost+1,{*right-1,py}});
		}
	}
	
	cout<<-1<<endl;
	
	
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值