前言
题意
给定一个 N ∗ M ( 1 e 9 ) N *M (1e9) N∗M(1e9)的图,给定起点和终点,选定一个方向冲刺
只有在撞到障碍物的时候才会停下,问最少多少步到终点
思路
本题最大的难点就是,图有点大和 b f s bfs bfs不好操作
我们可以使用 m a p < i n t , p i i > L , R map<int,pii> L,R map<int,pii>L,R存储障碍物信息
然后对于当前位置,可以使用二分查找,找到可以到达的障碍物位置,然后每次更新位
置即可 , (具体看操作)
由于宏定义了#define x first | y second
,所以查看代码的时候需要注意
Mycode
map<int,set<int>> L,R;
set<pii> done;
queue<pair<int,pii>> q;
int h,w,n;
int sx,sy,gx,gy;
void solve()
{
cin>>h>>w>>n;
cin>>sx>>sy>>gx>>gy;
for(int i=1;i<=n;i++){
int u,v;cin>>u>>v;
L[u].insert(v);//行上的列
R[v].insert(u);//列上的行
}
q.push({0,{sx,sy}});
while(!q.empty()){
auto t = q.front();
q.pop();
auto cost = t.x;
auto pos = t.y;
if(done.find(pos) != done.end()) continue;
done.insert(pos);
auto px = pos.x;
auto py = pos.y;
if(px == gx && py == gy){
cout<<cost<<endl;
return;
}
auto r = L[px];
auto p = r.upper_bound(py);
if(p!=r.begin()){
auto left = p ;
left --;
q.push({cost+1,{px,*left+1}});
}
if(p!=r.end()){
auto right=p;
q.push({cost+1,{px,*right-1}});
}
auto l=R[py];
auto v=l.upper_bound(px);
if(v!=l.begin()){
auto left=v;
left--;
q.push({cost+1,{*left+1,py}});
}
if(v!=l.end()){
auto right=v;
q.push({cost+1,{*right-1,py}});
}
}
cout<<-1<<endl;
}