K键盘里的青春K

我曾经失去的荣耀,我定加倍夺回

排序:
默认
按更新时间
按访问量
RSS订阅

霍夫线/圆变换从原理到源码详解

1 简述 2 标准霍夫线变换原理 2.1 霍夫变换直线的方程 2.2 霍夫空间 2.3 检测直线的方法 2.4 一个例子 3 标准霍夫线变换的算法流程 OpenCV中的函数 1 简述   霍夫变换是一个经典的特征提取技术,本文主要说的是霍夫线/圆变换,即从图像中获取直线与圆...

2018-09-06 22:17:34

阅读数:188

评论数:0

机器学习算法------梯度下降法

算法简述 梯度下降通常是通过迭代的方式来搜索某个函数的极大/小值,他对目标函数每个变量求偏导得出梯度,也就是沿着梯度方向函数值会增加的最快,那么要求最小值就要沿着梯度值的反方向,梯度下降分为随机梯度下降与批量梯度下降,以及小批量梯度下降,随机梯度相比批量梯度耗时少,但精度不如批量高,批量每一步都...

2018-09-06 19:21:26

阅读数:59

评论数:0

机器学习算法-------线性回归法

算法概述 线性回归其实是一种比较基础的回归算法,他假设特征与最后的结果之间存在某种线性关系,他通过最小化损失函数(平方误差),来获取最优的系数值和截距值,主要通过最小二乘法,对函数求偏导从而获取他的极值点,来最小化损失函数,线性回归有直接的正规方程解,所以可以直接得到系数矩阵,但复杂度相对较高,...

2018-08-08 15:49:21

阅读数:146

评论数:0

numpy和matplotlib基础

import numpy #引入numpy这个包 import numpy as np #引入numpy这个包并改名为np numpy.array的性质 nparr = np.array([i for i in range(10)]) #np.array只能存一种类型,定义之后如...

2018-08-03 20:39:19

阅读数:82

评论数:0

python-------pandas学习

Python中的pandas模块进行数据分析。 接下来pandas介绍中将学习到如下8块内容: 1、数据结构简介:DataFrame和Series 2、数据索引index 3、利用pandas查询数据 4、利用pandas的DataFrames进行统计分析 5、利用pandas实现SQL操作 6...

2018-08-03 20:38:56

阅读数:90

评论数:0

反卷积(转置卷积)的理解

参考:打开链接 卷积: 就是这个图啦,其中蓝色部分是输入的feature map,然后有3*3的卷积核在上面以步长为2的速度滑动,可以看到周围还加里一圈padding,用更标准化的参数方式来描述这个过程: 二维的离散卷积(N=2) 方形的特征输入(i1=i2=ii1=i2=i i_{1}=...

2018-08-01 16:29:48

阅读数:583

评论数:0

CReLU与PReLU的大体简介

本次介绍PReLU激活函数,方法来自于何凯明paper 《Delving Deep into Rectifiers:Surpassing Human-Level Performance on ImageNet Classification》. PReLU...

2018-07-31 21:14:12

阅读数:477

评论数:0

图片插值的3种方发

转自:打开链接 前言 在做数字图像处理时,经常会碰到小数象素坐标的取值问题,这时就需要依据邻近象素的值来对该坐标进行插值。比如:做地图投影转换,对目标图像的一个象素进行坐标变换到源图像上对应的点时,变换出来的对应的坐标是一个小数,再比如做图像的几何校正,也会碰到同样的问题。 关于图像重采样插...

2018-07-24 20:43:14

阅读数:130

评论数:0

机器学习-------评价分类结果

准确度的陷阱和混淆矩阵和精准率召回率 准确度的陷阱 准确度并不是越高说明模型越好,或者说准确度高不代表模型好,比如对于极度偏斜(skewed data)的数据,假如我们的模型只能显示一个结果A,但是100个数据只有一个结果B,我们的准确率会是99%,我们模型明明有问题却有极高的准确率,这让...

2018-07-24 09:31:24

阅读数:396

评论数:0

约束优化方法之拉格朗日乘子法与KKT条件

PS:以下来自人工智能头条公众号,支持向量机部分约束问题分为等式约束和不等式约束,对于等式约束问题我们可以直接采用拉格朗日乘子法来解决,对于含有不等式约束的优化问题,可以转化为在满足 KKT 约束条件下应用拉格朗日乘子法求解.拉格朗日乘子法得到的解不一定是最优解,只有在函数是凸函数的条件下才能得到...

2018-05-18 11:16:28

阅读数:144

评论数:0

梯度下降(Gradient Descent)小结

前言:不得不感谢互联网的蓬勃发展,让知识与思维有充分的交流,让我有幸看到一些卓越的人他们的见解与思维总结,此文是学习BP神经网络(面向数学建模,比较浅显)中遇到梯度下降法,ML小白,因此查到此文,现在才感叹当初大一线代高数并没有深入研究,只是面向应试而学习,因此此文许多地方一知半解,但此文强大的逻...

2018-01-31 14:16:36

阅读数:1578

评论数:0

蒙特卡洛算法及简单应用

基本概念 蒙特卡罗方法又称统计模拟法、随机抽样技术,是一种随机模拟方法,以概率和统计理论方法为基础的一种计算方法,是使用随机数(或伪随机数)来解决很多计算问题的方法。将所求解的问题同一定的概率模型相联系,用电子计算机实现统计模拟或抽样,以获得问题的近似解。为象征性地表明这一方法的概率统计特征,故...

2018-01-24 14:34:52

阅读数:728

评论数:0

遗传算法入门到掌握

博主前言:此文章来自一份网络资料,原作者不明,是我看过的最好的一份遗传算法教程,如果你能耐心看完他,相信你一定能基本掌握遗传算法。PS:遗传算法真的是一种很神奇的算法,算法真的好奇妙 再加一些比较好的链接~如何通俗易懂地解释遗传算法?有什么例子? - 知乎用户的回答 - 知乎https://www...

2017-12-22 16:50:54

阅读数:2335

评论数:0

模拟退火

模拟退火算法是用来求解最优化问题的算法。比如著名的TSP问题,函数最大值最小值问题等等。接下来将以如下几个方面来详细介绍模拟退火算法。 Contents    1. 模拟退火算法认识   2. 模拟退火算法描述   3. 费马点问题求解   4. 最小包含球问题求解   5. 函数最值问题求解  ...

2017-10-24 18:47:13

阅读数:4147

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭