二/三维空间曲面的切平面以及在某一点上的切线,法线

0 二维曲线

对于二维曲线上的某一个点,他的梯度组成的向量就是他的法向量,证:
因为二维曲线某一个点的曲线部分可以看成直线,设直线方程: ax+by+c=0 a x + b y + c = 0 那么他的斜率为 ab − a b , 该方程x方向与y方向的梯度分别为: (a,b) ( a , b ) ,这个向量的斜率为 ba b a ,两者相乘恰好是-1,因此证明某个点的梯度其实就是这个点所在那部分曲线的法线。

以下转自: 文章地址

(博文大部分取自于北科的课件,略加整理而成…)

1.曲面方程为隐式方程的情况:

光滑曲面方程形式为:


在曲面上任意取一点M(x0,y0,z0),曲线方程为:

设t=t0时对应点M,那么M点处的切向量为:

切线方程为:

M点处的法向量为:

法线方程为:

,,

å上过点M的任何曲线在该点的切线都在同一平面上,此平面称为在该点的切平面,切平面的方程为:




2.曲面方程为显式方程的情况:



实例:


评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值