我们都知道 二分查找 适用于单调函数中逼近求解某点的值。
如果遇到凸性或凹形函数时,可以用三分查找求那个凸点或凹点。
下面的方法应该是三分查找的一个变形。
如图所示,已知左右端点L、R,要求找到白点的位置。
思路:通过不断缩小 [L,R] 的范围,无限逼近白点。
做法:先取 [L,R] 的中点 mid,再取 [mid,R] 的中点 mmid,通过比较 f(mid) 与 f(mmid) 的大小来缩小范围。
当最后 L=R-1 时,再比较下这两个点的值,我们就找到了答案。
1、当 f(mid) > f(mmid) 的时候,我们可以断定 mmid 一定在白点的右边。
反证法:假设 mmid 在白点的左边,则 mid 也一定在白点的左边,又由 f(mid) > f(mmid) 可推出 mmid < mid,与已知矛盾,故假设不成立。
所以,此时可以将 R = mmid 来缩小范围。
2、当 f(mid) < f(mmid) 的时候,我们可以断定 mid 一定在白点的左边。
反证法:假设 mid 在白点的右边,则 mmid 也一定在白点的右边,又由 f(mid) < f(mmid) 可推出 mid > mmid,与已知矛盾,故假设不成立。
同理,此时可以将 L = mid 来缩小范围。
- int SanFen(int l,int r) //找凸点
- {
- while(l < r-1)
- {
- int mid = (l+r)/2;
- int mmid = (mid+r)/2;
- if( f(mid) > f(mmid) )
- r = mmid;
- else
- l = mid;
- }
- return f(l) > f(r) ? l : r;
- }
一. 概念
在二分查找的基础上,在右区间(或左区间)再进行一次二分,这样的查找算法称为三分查找,也就是三分法。
三分查找通常用来迅速确定最值。
二分查找所面向的搜索序列的要求是:具有单调性(不一定严格单调);没有单调性的序列不是使用二分查找。
与二分查找不同的是,三分法所面向的搜索序列的要求是:序列为一个凸性函数。通俗来讲,就是该序列必须有一个最大值(或最小值),在最大值(最小值)的左侧序列,必须满足不严格单调递增(递减),右侧序列必须满足不严格单调递减(递增)。如下图,表示一个有最大值的凸性函数:

二、算法过程
(1)、与二分法类似,先取整个区间的中间值mid。
(2)、再取右侧区间的中间值midmid,从而把区间分为三个小区间。
比较mid与midmid谁最靠近最值,只需要确定mid所在的函数值与midmid所在的函数值的大小。当最值为最大值时,mid与midmid中较大的那个自然更为靠近最值。最值为最小值时同理。
(4)、重复(1)(2)(3)直至找到最值。
(5)、另一种三分写法
- double three_devide(double low,double up)
- {
- double m1,m2;
- while(up-low>=eps)
- {
- m1=low+(up-low)/3;
- m2=up-(up-low)/3;
- if(f(m1)<=f(m2))
- low=m1;
- else
- up=m2;
- }
- return (m1+m2)/2;
- }
算法的正确性:
1、mid与midmid在最值的同一侧。由于凸性函数在最大值(最小值)任意一侧都具有单调性,因此,mid与midmid中,更大(小)的那个 数自然更为靠近最值。此时,我们远离最值的那个区间不可能包含最值,因此可以舍弃。
2、mid与midmid在最值的两侧。由于最值在中间的一个区间,因此我们舍弃一个区间后,并不会影响到最值
- const double EPS = 1e-10;
- double calc(double x)
- {
- // f(x) = -(x-3)^2 + 2;
- return -(x-3.0)*(x-3.0) + 2;
- }
- double ternarySearch(double low, double high)
- {
- double mid, midmid;
- while (low + EPS < high)
- {
- mid = (low + high) / 2;
- midmid = (mid + high) / 2;
- double mid_value = calc(mid);
- double midmid_value = calc(midmid);
- if (mid_value > midmid_value)
- high = midmid;
- else
- low = mid;
- }
- return low;
- }