Matlab实现插值与拟合

转自:点击打开链接

1、拉格朗日插值

新建如下函数:

function y=lagrange(x0,y0,x) 
%拉格朗日插值函数 
%n 个节点数据以数组 x0, y0 输入(注意 Matlat 的数组下标从1开始), 
%m 个插值点以数组 x 输入,输出数组 y 为 m 个插值 
n=length(x0);m=length(x); 
for i=1:m 
z=x(i); 
s=0.0; 
for k=1:n 
      p=1.0; 
      for j=1:n 
           if j~=k 
              p=p*(z-x0(j))/(x0(k)-x0(j)); 
           end 
      end 
      s=p*y0(k)+s; 
end 
y(i)=s; 
end


应用实例:

1
2
3
4
5
x0=1:1:20;
y0=x0.^2-20*x0-5;
x=1:0.1:20;
z=lagrange(x0,y0,x);
plot(x,z,':',x0,y0,'ko');

运行结果:

image

2、分段线性插值

MATLAB现成的插值函数为interp1,其调用格式为:  yi= interp1(x,y,xi,'method')

其中x,y为插值点,yi为在被插值点xi处的插值结果;x,y为向量, 'method'表示采用的插值方法,包括: 
'method':是最近项插值;                                                              'linear':线性插值;(默认)

'spline':逐段3次样条插值; (下面的三次样条插值会用到)             'cubic':保凹凸性3次插值

'pchip':分段三次Hermite 插值。

例如:在一天24小时内,从零点开始每间隔2小时测得的环境温度数据分别为 
            12,9,9,1,0,18 ,24,28,27,25,20,18,15,13, 
推测中午12点(即13点)时的温度.

x=0:2:24; 
y=[12,9,9,10,18,24,28,27,25,20,18,15,13]; 
x1=0:0.5:24; 
y1=interp1(x,y,x1,'linear'); 
plot(x,y,'bo',x1,y1,'r:');


运行结果:

image

3、埃尔米特插值

如果要求插值函数不仅在节点处与函数同值,而且要求它与函数有相同的一阶、二阶甚至高阶导数值,这就是埃尔米特插值问题。

已知f(x)的n+1个节点的函数值f(xi)以及导数值f`(xi),可得一个至多n+1次的多项式H(x),即hermite插值多项式。

新建以下这个函数:

function y = hermite( x0,y0,y1,x ) 
%埃尔米特插值多项式 
%x0为点横坐标 
%y0为函数值 
%y1为导数值 
%m个插值点用数组x输入 
n=length(x0);m=length(x); 
for k=1:m 
    yy=0.0; 
    for i=1:n 
     h=1.0; 
     a=0.0; 
      for j=1:n 
         if j~=i 
           h=h*((x(k)-x0(j))/(x0(i)-x0(j)))^2; 
           a=1/(x0(i)-x0(j))+a; 
         end 
      end 
      yy=yy+h*((x0(i)-x(k))*(2*a*y0(i)-y1(i))+y0(i)); 
end 
y(k)=yy; 
end


4、样条插值

所谓样条( Spline)本来是工程设计中使用的一种绘图工具,它是富有弹性的细木条或细金属条。绘图员利用它把一些已知点连接成一条光滑曲线(称为样条曲线),并使连接点处有连续的曲率。

数学上将具有一定光滑性的分段多项式称为样条函数。

在实际中最常用的是二次样条函数和三次样条函数:

二次样条函数插值

image 
首先,我们注意到s2 (x)中含有 + 2 个特定常数,故应需要 + 2 个插值条件,因此,二次样条插值问题可分为两类:

(1)已知插值节点xi 和相应的函数值 yi (= 0,1,…,n) 以及端点 x0 (或 xn )处的导数值y'0(或y'n)

(2)已知插值节点xi 和相应的导数值 y'(= 0,1,…,n) 以及端点 x0 (或 xn )处的函数值y0 (或yn 

三次样条函数插值

image

由于 s3 (x)中含有+ 3 个待定系数,故应需要 + 3 个插值条件,已知插值节点xi 和相应的函数值 f(xi ) = yi (= 0,1,…,n) ,这里提供了 + 1 个条件,还需要 2 个边界条件。因此,三次样条插值问题可分为三类:

(1)s'3 (a) = y'0 ,s'3 (b) = y'。由这种边界条件建立的样条插值函数称为 f(x) 的完备三次样条插值函数。 
特别地,y0' = yn`= 0时,样条曲线在端点处呈水平状态。 
如果 f' (x) 不知道,我们可以要求 s'3 (x) 与 f' (x) 在端点处近似相等。这时以x0 , x1 , x2 , x3 为节点作一个三次 Newton 插值多项式 Na (x) ,以 xnxn−1, xn−2, xn−3 作一个三次 Newton 插值多项式 Nb (x) ,要求s' (a) = N'(a), s' (b) = N'(b
由这种边界条件建立的三次样条称为 f(x) 的 Lagrange 三次样条插值函数。

(2)s"3 (a) = y"0 ,s"3 (b) = y"3 。特别地 y"y"= 0 时,称为自然边界条件。

(3)s'3 ( + 0) = s'3 ( − 0), s"3 (+ 0) = s"3 (− 0) , (这里要求 s3 (+ 0) =s3 (− 0) )此条件称为周期条件。

Matlab实现(三次样条插值)

Matlab中的函数:

1、y=interp1(x0,y0,x,`spline`);%(spline改成linear,则变成线性插值)

2、y=spline(x0,y0,xi);%这个是根据己知的x,y数据,用样条函数插值出xi处的值。即由x,y的值计算出xi对应的函数值。

3、pp=spline(x0,y0);%是由根据己知的x,y数据,求出它的样条函数表达式,不过该表达式不是用矩阵直接表示,要求点x`的值,要用函数y`=ppval(pp,x`);

4、pp=csape(x,y,'变界类型','边界值conds');生成各种边界条件的三次样条插值. 其中,(x,y)为数据向量,边界类型可为:

             'complete':给定边界一阶导数,即默认的边界条件,Lagrange边界条件 
             'not-a-knot':非扭结条件,不用给边界值. 
             'periodic':周期性边界条件,不用给边界值. 
             'second':给定边界二阶导数.  
             'variational':自然样条(边界二阶导数为[0,0]

     边界值conds可用1x2矩阵表示,矩阵元素取值为1,2,此时,使用命令 
pp=csape(x0,y0_ext,conds) 
其中 y0_ext=[left, y0, right],这里 left 表示左边界的取值, right 表示右边界的取值。 
conds(i)=j 的含义是给定端点 的 阶导数, 即 conds 的第一个元素表示左边界的条 
件,第二个元素表示右边界的条件, conds=[2,1]表示左边界是二阶导数,右边界是一阶 
导数,对应的值由 left 和 right 给出。

例子:

表 1 
x  0  3      5   7     9  11  12  13  14  15 
y  0 1.2 1.7 2.0 2.1 2.0 1.8 1.2 1.0 1.6 
要求用 Lagrange、分段线性和三次样条三种插值方法计算。

编程实现:

clear,clc 
x0=[0,3,5,7,9,11,12,13,14,15]; 
y0=[0,1.2,1.7,2.0,2.1,2.0,1.8,1.2,1.0,1.6]; 
t=0:0.05:15; 
%拉格朗日插值函数 
y1=lagrange(x0,y0,t);%调用编写的lagrange函数 
dy1=(lagrange(x0,y0,0.0001)-lagrange(x0,y0,0))/0.0001%x=0处斜率 
min1=min(lagrange(x0,y0,13:0.001:15))%13到15最小值 
subplot(2,2,1); 
plot(x0,y0,'ro',t,y1);%画出曲线 
title('拉格朗日插值函数'); 
%分段线性插值 
y2=interp1(x0,y0,t,'spline');%注意区分spline与linear 
Y2=interp1(x0,y0,t);%默认linear 
dy2=(interp1(x0,y0,0.0001,'spline')-interp1(x0,y0,0,'spline'))/0.0001%x=0处斜率 
min2=min(interp1(x0,y0,13:0.001:15,'spline'))%13到15最小值 
subplot(2,2,2); 
plot(t,y2,'b',t,Y2,'r',x0,y0,'ro');%画出曲线 
title('分段线性插值'); 
legend('边条','线性');%显示图形图例 
%三次线条插值A 
y3=spline(x0,y0,t); 
dy3=(spline(x0,y0,0.0001)-spline(x0,y0,0))/0.0001%x=0处斜率 
min3=min(spline(x0,y0,13:0.001:15))%13到15最小值 
subplot(2,2,3); 
plot(x0,y0,'ro',t,y3);%画出曲线 
title('三次线条插值A'); 
%三次线条插值B 
pp1=csape(x0,y0);%默认的边界条件,即给定边界一阶导数 
pp2=csape(x0,y0,'second');%给定边界二阶导数 
y4=ppval(pp1,t); 
Y4=ppval(pp2,t); 
dy4=(ppval(pp1,0.0001)-ppval(pp1,0))/0.0001%x=0处斜率 
min4=min(ppval(pp1,13:0.001:15))%13到15最小值 
subplot(2,2,4); 
plot(t,y4,'b',t,Y4,'r',x0,y0,'ro');%画出曲线 
title('三次线条插值B'); 
legend('一阶','二阶');


运行结果:

image

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
dy1 =
 
  -55.2855
 
 
min1 =
 
    0.9391
 
 
dy2 =
 
    0.5023
 
 
min2 =
 
    0.9828
 
 
dy3 =
 
    0.5023
 
 
min3 =
 
    0.9828
 
 
dy4 =
 
    0.5007
 
 
min4 =
 
    0.9851

综上,可以看出,拉格朗日插值函数根本不能应用,分段线性函数的光滑性较差,推荐三次样条插值。

同时,可以看出,interp1(x0,y0,’spline’)等价于spline(x0,y0)。

最后,将上述所有情况封装起来,变成下列函数:

function y = showAllInterp( x0,y0,s,t)
%显示x0,y0之间所有不同类型的插值情况
%字符串s选择要输出的插值类型:
%all:全部类型           lagrange:拉格朗日插值函数
%linear:分段线性插值    spline:三次线条插值A
%csape:三次线条插值B
if(nargin<4)
    t=linspace(x0(1),x0(length(x0)),500);%默认
end
switch s
    case 'lagrange' %拉格朗日插值函数
        y1=lagrange(x0,y0,t);%调用编写的lagrange函数
        plot(x0,y0,'ro',t,y1);%画出曲线
        title('拉格朗日插值函数');
        if(nargout==1)
            y=y1;
        end
    case 'linear' %分段线性插值
        y2=interp1(x0,y0,t);%默认linear 
        plot(x0,y0,'ro',t,y2,'b');%画出曲线
        title('分段线性插值');
        if(nargout==1)
            y=y2;
        end
    case 'spline' %三次线条插值A
        y3=spline(x0,y0,t); %等价于interp1(x0,y0,t,'spline');
        plot(x0,y0,'ro',t,y3);%画出曲线 
        title('三次线条插值A'); 
        if(nargout==1)
            y=y3;
        end
    case 'csape' %三次线条插值B
        pp1=csape(x0,y0);%默认的边界条件,即给定边界一阶导数 
        pp2=csape(x0,y0,'second');%给定边界二阶导数 
        y4=ppval(pp1,t); 
        Y4=ppval(pp2,t); 
        plot(t,y4,'b',t,Y4,'r',x0,y0,'ro');%画出曲线
        title('三次线条插值B');
        legend('一阶','二阶');
        if(nargout==1)
            y=y4;
        end
    case 'all' %显示全部
        y1=lagrange(x0,y0,t);%调用编写的lagrange函数
        subplot(2,2,1);
        plot(x0,y0,'ro',t,y1);%画出曲线
        title('拉格朗日插值函数');
        
        y2=interp1(x0,y0,t);%默认linear 
        subplot(2,2,2);
        plot(x0,y0,'ro',t,y2);%画出曲线
        title('分段线性插值');
            
        y3=spline(x0,y0,t); %等价于interp1(x0,y0,t,'spline');
        subplot(2,2,3);
        plot(x0,y0,'ro',t,y3);%画出曲线 
        title('三次线条插值A');

        pp1=csape(x0,y0);%默认的边界条件,即给定边界一阶导数 
        pp2=csape(x0,y0,'second');%给定边界二阶导数 
        y4=ppval(pp1,t); 
        Y4=ppval(pp2,t);
        subplot(2,2,4);
        plot(t,y4,'b',t,Y4,'r',x0,y0,'ro');%画出曲线
        title('三次线条插值B');
        legend('一阶','二阶');
end

二维插值之插值节点为网格节点

已知m x n个节点:(xi,yj,zij)(i=1…m,j=1…n),且xi,yi递增。求(x,y)处的插值z。

         Matlab可以直接调用interp2(x0,y0,z0,x,y,`method`)

        其中 x0,y0 分别为 维和 维向量,表示节点, z0 为 × 维矩阵,表示节点值, x,y 
为一维数组,表示插值点, x 与 y 应是方向不同的向量,即一个是行向量,另一个是列 
向量, z 为矩阵,它的行数为 的维数,列数为 的维数,表示得到的插值, 'method' 
的用法同上面的一维插值。

        如果是三次样条插值,可以使用命令 
          pp=csape({x0,y0},z0,conds,valconds),   z=fnval(pp,{x,y}) 
其中 x0,y0 分别为 维和 维向量, z0 为 × 维矩阵, 为矩阵,它的行数为 的维 
数,列数为 的维数,表示得到的插值,具体使用方法同一维插值。

eg:

image

(1)、用interp2函数插值:

x=100:100:500; 
y=100:100:400; 
z=[636 697 624 478 450 
    698 712 630 478 420 
    680 674 598 412 400 
    662 626 552 334 310]; 
p=100:1:500; 
q=100:1:400; 
q=q';%须为列向量 
z0=interp2(x,y,z,p,q);%分段线性插值 
z1=interp2(x,y,z,p,q,'spline');%三次线条插值 
subplot(2,1,1); 
mesh(p,q,z0); 
title('分段线性插值'); 
subplot(2,1,2); 
mesh(p,q,z1); 
title('三次线条插值'); 
%可以观察出,三次线条插值的图像更平滑 


运行结果:

image

 

(2)、用csape函数插值:

x=100:100:500; 
y=100:100:400; 
z=[636 697 624 478 450 
    698 712 630 478 420 
    680 674 598 412 400 
    662 626 552 334 310]; 
p=100:1:500; 
q=100:1:400; 
q=q'; 
%三次线条插值 
pp=csape({x,y},z');%注意跟interp2的区别,有个转置 
z0=fnval(pp,{p,q}); 
mesh(p,q,z0');%注意跟interp2的区别,有个转置 
title('三次线条插值');

运行结果:

image

2、二维插值之插值节点为散乱节点

已知 个节点: ( xi yi zi )(= 1,2,…, n) ,求点 (xy) 处的插值 。 
对上述问题, Matlab 中提供了插值函数 griddata,其格式为: 
ZI = GRIDDATA(X,Y,Z,XI,YI) 
其中 X、 Y、 Z 均为 n 维向量,指明所给数据点的横坐标、纵坐标和竖坐标。向量 XI、 
YI 是给定的网格点的横坐标和纵坐标,返回值 ZI 为网格( XI, YI)处的函数值。 XI 
与 YI 应是方向不同的向量,即一个是行向量,另一个是列向量。

eg:

%散乱节点的二维插值 
x=[129 140 103.5 88 185.5 195 105 157.5 107.5 77 81 162 162 117.5]; 
y=[7.5 141.5 23 147 22.5 137.5 85.5 -6.5 -81 3 56.5 -66.5 84 -33.5]; 
z=-[4 8 6 8 6 8 8 9 9 8 8  9 4 9]; 
x0=[75:1:200]; 
y0=[-85:1:145]'; 
z0=griddata(x,y,z,x0,y0,'cubic');%保凹凸性3次插值 
%[xx,yy]=meshgrid(x0,y0);无需采样,故不需要该函数 
mesh(x0,y0,z0);

运行结果:

image

在上述问题中,补上寻找最大值的程序:

%max(z0)返回一个行向量,向量的第i个元素是矩阵A的第i列上的最大值 
%find(A) 寻找矩阵A非零元素下标,返回矩阵A中非零元素所在位置 
%[i,j,v]=find(A)返回矩阵A中非零元素所在的行i,列j,和元素的值v(按所在位置先后顺序输出) 
[p,q]=find(z0==max(max(z0))); 
zmax=z0(p,q)


3、最小二乘法实现曲线拟合

(1)用最小二乘法求一个形如 bx^ 2 的经验公式:

%等价于[1,x^2][a;b]=y,转换成解超定方程问题,超定方程的解是根据最小二乘法得来的

x=[19 25 31 38 44]'; 
y=[19.0 32.3 49.0 73.3 97.8]'; 
r=[ones(5,1),x.^2] 
ab=r\y 
x0=19:0.1:44; 
y0=ab(1)+ab(2)*x0.^2; 
plot(x,y,'o',x0,y0,'r')

(2)多项式拟合

%a=polyfit(x,y,n)用多项式求过已知点的表达式,其中x为源数据点对应的横坐标,可为行向量、矩阵,y为源数据点对应的纵坐标,可为行向量、矩阵,n为你要拟合的阶数,一阶直线拟合,二阶抛物线拟合,并非阶次越高越好,看拟合情况而定,a为m+1的行向量。polyfit函数的数学基础是最小二乘法曲线拟合原理,所得到的函数值在基点处的值与原来点的坐标偏差最小,常用于数据拟合,polyfit 做出来的值从左到右表示从高次到低次的多项式系数。

如果要求拟合函数在x`点的函数值,可以调用polyval(a,x`)函数

eg:

x0=[1990 1991 1992 1993 1994 1995 1996]; 
y0=[70 122 144 152 174 196 202]; 
%画出散点图 
plot(x0,y0,'ro'); 
hold on 
%用线性拟合 
p=polyfit(x0,y0,1); 
z0=polyval(p,x0); 
plot(x0,z0);

运行结果:

image

 

4、最小二乘优化 (最小二乘:least square)

image

1、lsqlin函数

image

eg:

%拟合形如y=a+bx^2的函数 
%采样点 
x=[19 25 31 38 44]'; 
y=[19 32.3 49 73.3 97.8]'; 
r=[ones(5,1),x.^2]; 
ab=lsqlin(r,y) 
x0=19:0.1:44; 
y0=ab(1)+ab(2)*x0.^2; 
plot(x,y,'o',x0,y0,'r')

运行结果:

image

 

5、曲线拟合与函数逼近

image

eg:

求 f(x) =cos x(-pi/2<=x<=pi/2) 在 = Span{1, x^2 , x^4} 中的最佳平方逼近多项式。

程序如下:

syms x%定义符号数值 
base=[1,x^2,x^4]; 
y1=base.'*base 
y2=cos(x)*base.' 
r1=int(y1,-pi/2,pi/2) 
r2=int(y2,-pi/2,pi/2) 
a=r1\r2%a为符号数值 
xishu1=double(a)%化简符号数值 
digits(8)%设置符号数值的精度 
xishu2=vpa(a)%任意精度(符号类)数值 

运行结果:

y1 =
   
[   1, x^2, x^4]
[ x^2, x^4, x^6]
[ x^4, x^6, x^8]
   
   
y2 =
   
     cos(x)
x^2*cos(x)
x^4*cos(x)
   
   
r1 =
   
[      pi,  pi^3/12,   pi^5/80]
[ pi^3/12,  pi^5/80,  pi^7/448]
[ pi^5/80, pi^7/448, pi^9/2304]
   
   
r2 =
   
                    2
           pi^2/2 - 4
pi^4/8 - 6*pi^2 + 48
   
   
a =
   
(15*(pi^4 - 308*pi^2 + 3024))/(4*pi^5)
   -(210*(pi^4 - 228*pi^2 + 2160))/pi^7
   (1260*(pi^4 - 180*pi^2 + 1680))/pi^9
  
 
xishu1 =
 
    0.9996
   -0.4964
    0.0372
 
   
xishu2 =
   
  0.99957952
-0.49639233
0.037209327
   
>>

  

所以y的最佳平方逼近多项式为y=0.9996-0.4964x^2+0.0372x^4


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值