工业质检中的小样本学习方案:基于元学习的缺陷检测实战

(https://i-blog.csdnimg.cn/direct/76afc857190f414186b5e2c985b6291f.png)

引言:工业质检的困境与破局

在智能制造场景中,传统质检方案面临样本稀缺缺陷多样产线快速切换三大挑战。本文提出融合元学习(Meta-Learning)与域自适应(Domain Adaptation)的创新方案,实现在10个样本内达到98%+检测准确率,并提供完整PyTorch实现与调优策略。


一、小样本缺陷检测技术路线

1.1 整体架构设计

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

.猫的树

你的鼓励就是我最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值