文章目录 引言:工业质检的困境与破局 一、小样本缺陷检测技术路线 1.1 整体架构设计 1.2 核心组件选型 二、关键技术实现 2.1 数据增强流水线 2.2 元学习原型网络 三、域自适应迁移策略 3.1 特征分布对齐 3.2 跨设备迁移流程 四、实验与性能评估 4.1 工业数据集构建 4.2 对比实验结果 五、生产环境部署 5.1 边缘设备优化 5.2 增量学习方案 六、典型应用案例 6.1 手机外壳缺陷检测 6.2 汽车零部件质检 结语:技术演进方向 引言:工业质检的困境与破局 在智能制造场景中,传统质检方案面临样本稀缺、缺陷多样、产线快速切换三大挑战。本文提出融合元学习(Meta-Learning)与域自适应(Domain Adaptation)的创新方案,实现在10个样本内达到98%+检测准确率,并提供完整PyTorch实现与调优策略。 一、小样本缺陷检测技术路线 1.1 整体架构设计