滑动窗口算法框架:移动右侧窗口,进行窗口内数据的一系列更新;判断左侧窗口是否需要收缩,再左移窗口,进行窗口内数据的一系列更新。
/* 滑动窗口算法框架 */
void slidingWindow(string s, string t) {
unordered_map<char, int> need, window;
for (char c : t) need[c]++;
int left = 0, right = 0;
int valid = 0;
while (right < s.size()) {
// c 是将移入窗口的字符
char c = s[right];
// 右移窗口
right++;
// 进行窗口内数据的一系列更新
...
/*** debug 输出的位置 ***/
printf("window: [%d, %d)\n", left, right);
/********************/
// 判断左侧窗口是否要收缩
while (window needs shrink) {
// d 是将移出窗口的字符
char d = s[left];
// 左移窗口
left++;
// 进行窗口内数据的一系列更新
...
}
}
}
其中两处...
表示的更新窗口数据的地方,根据题目直接往里面填就行了。下面是四道例题,在框架基础上进行填充。
1、最小覆盖子串
给你一个字符串 S、一个字符串 T,请在字符串 S 里面找出:包含 T 所有字符的最小子串。
示例:
输入: S = "ADOBECODEBANC", T = "ABC"
输出: "BANC"
说明:
如果 S 中不存这样的子串,则返回空字符串 ""。如果 S 中存在这样的子串,我们保证它是唯一的答案。
class Solution {
public:
string minWindow(string s, string t) {
unordered_map<char,int> need,window;
//need记录需要包含的所有字符及其个数
for(char c:t)
need[c]++;
int left = 0,right = 0;
int valid = 0;//窗口中满足need条件的字符个数
//记录最小覆盖子串的起始索引和长度
int start = 0,len = INT_MAX;
while(right<s.size())
{
char c = s[right];
right++;
if(need.count(c))
{
window[c]++;
if(window[c] == need[c])
valid++;
}
while(valid == need.size())//
{
if(right-left < len)
{
start = left;
len = right-left;
}
char d = s[left];
left++;
if(need.count(d))
{
if(window[d] == need[d])
valid--;
window[d]--;
}
}
}
return len == INT_MAX?"":s.substr(start,len);
}
};
2、字符串的排列
给定两个字符串 s1 和 s2,写一个函数来判断 s2 是否包含 s1 的排列。
换句话说,第一个字符串的排列之一是第二个字符串的子串。
示例1:
输入: s1 = "ab" s2 = "eidbaooo"
输出: True
解释: s2 包含 s1 的排列之一 ("ba").
示例2:
输入: s1= "ab" s2 = "eidboaoo"
输出: False
class Solution {
public:
bool checkInclusion(string s1, string s2) {
unordered_map<char,int>need,window;
for(int c:s1)
need[c]++;
int left = 0,right = 0;
int valid = 0;
while(right<s2.size())
{
char c = s2[right];
right++;
if(need.count(c))
{
window[c]++;
if(window[c]==need[c])
valid++;
}
while(right-left >= s1.size())
{
if(valid == need.size())
return true;
char d = s2[left];
left++;
if(need.count(d))
{
if(window[d]==need[d])
valid--;
window[d]--;
}
}
}
return false;
}
};
给定一个字符串 s 和一个非空字符串 p,找到 s 中所有是 p 的字母异位词的子串,返回这些子串的起始索引。字符串只包含小写英文字母,并且字符串 s 和 p 的长度都不超过 20100。
说明:
字母异位词指字母相同,但排列不同的字符串。不考虑答案输出的顺序。
示例 1:
输入:s: "cbaebabacd" p: "abc"
输出:[0, 6]
解释:起始索引等于 0 的子串是 "cba", 它是 "abc" 的字母异位词。起始索引等于 6 的子串是 "bac", 它是 "abc" 的字母异位词。
class Solution {
public:
vector<int> findAnagrams(string s, string p) {
unordered_map<char,int>need,window;
vector<int> res;
for(int c:p)
need[c]++;
int left = 0,right = 0;
int valid = 0;
int start;//记录起始索引
while(right<s.size())
{
char c = s[right];
right++;
if(need.count(c))
{
window[c]++;
if(window[c] == need[c])
valid++;
}
while(right-left >= p.size())
{
if(valid == need.size())
{
start = left;
res.push_back(start);
}
char d = s[left];
left++;
if(need.count(d))
{
if(window[d]==need[d])
valid--;
window[d]--;
}
}
}
return res;
}
};
4、无重复字符的最大子串
给定一个字符串,请你找出其中不含有重复字符的 最长子串 的长度。
示例 1:
输入: "abcabcbb"
输出: 3
解释: 因为无重复字符的最长子串是 "abc",所以其长度为 3。
示例 2:
输入: "bbbbb"
输出: 1
解释: 因为无重复字符的最长子串是 "b",所以其长度为 1。
示例 3:
输入: "pwwkew"
输出: 3
解释: 因为无重复字符的最长子串是 "wke",所以其长度为 3。
请注意,你的答案必须是 子串 的长度,"pwke" 是一个子序列,不是子串。
class Solution {
public:
int lengthOfLongestSubstring(string s) {
if(s.size() == 0)
return 0;
unordered_map<char,int>window;
int left = 0, right = 0;
int len = 0;
while(right<s.size())
{
char c = s[right];
right++;
window[c]++;
while(window[c]>1)//有重复字符,移动左窗,使窗口内无重复字符
{
char d = s[left];
left++;
window[d]--;
}
len = max(len,right-left);//更新结果
}
return len;
}
};