一、前言
这是这个系列的最后一篇,我们讲一讲什么是一类错误,什么是二类错误。这个系列统计推断基础5部分分别是:
- 总体、样本、标准差、标准误【定量分析、量化金融与统计学】统计推断基础(1)---总体、样本、标准差、标准误
- 样本均值分布、中心极限定理、正态分布【定量分析、量化金融与统计学】统计推断基础(2)---样本均值分布、中心极限定理、正态分布
- 点估计、区间估计【定量分析、量化金融与统计学】统计推断基础(3)---点估计、区间估计
- 假设检验【定量分析、量化金融与统计学】统计推断基础(4)---假设检验(T或者Z检验)
- I型误差,II型误差
二、一类错误与二类错误
概念:
第一类错误:原假设是正确的,却拒绝了原假设。
第二类错误:原假设是错误的,却没有拒绝原假设。
我们举三个例子来说明这个问题:(例1,例2来自百度百科《统计学》中“第一类错误”和“第二类错误”分别是指什么?_百度知道)
例1:判决问题
假设检验比作法庭判案,我们想知道被告是好人还是坏人。
原假设是“被告是好人”,备择假设是“被告是坏人”。
法庭判案会犯两种错误:
- 如果被告真是好人,而你判他有罪,这是第一类错误(错杀好人);
- 如果被告真是坏人,而你判他无罪,这是第二类错误(放走坏人)。
例2:误诊问题
假设我们从某个指标一组检测结果判断某个人是否是肝病病人。
原假设:健康人,备择假设:肝病病人。
那么,当这组数据表明应该拒绝原假设,那么,我们可能会犯第Ⅰ类错误,将健康人误诊为肝病病人(图中黄色部分)。但是如果我们接受了原假设,认为该人为健康人,我们有可能会犯第II类错误,将肝病病人认为是健康人(图中红色部分),因为有一部分肝病病人该指标的表现和正常人类似,从数据无法判断。
例3:
1类错误就是你对一个男人说:你怀孕了
H0:没怀孕
H1:怀孕了
2类错误就是你对一个孕妇说:你没怀孕
H0:没怀孕
H1:怀孕了